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L I S T O F S Y M B O L S

1. gµν: metric tensor

2. g: determinant of gµν

3. ηI J : Minkowski metric

4. ∇̂µ: Levi-Civita connection

5. ∇µ: covariant derivative with non-zero torsion

6. Γ̂α
νµ: Christoffel symbols

7. Γα
µν: general affine connection with torsion

8. R̂ρ
σµν: torsion-free Riemann tensor

9. R̂µν: torsion-free Ricci tensor

10. R̂: torsion-free Ricci scalar

11. Ĝµν(≡ R̂µν − 1
2 gµνR̂): torsion-free Einstein tensor

12. Rρ
σµν: torsionful Riemann tensor

13. Rµν: torsionful Ricci tensor

14. R: torsionful Ricci scalar

15. Gµν(≡ Rµν − 1
2 gµνR): torsionful Einstein tensor

16. Cα
µν: (Cartan) torsion tensor

17. Sα
µν: contorsion tensor

18. eI
µ: tetrads

19. eµ
I : co-tetrads

20. |e|: determinant of eI
µ

21. AI J
µ : torsionful spin connection

22. ΛI J
µ : contorsion component of AI J

µ

23. Dµ: covariant derivative corresponding to AI J
µ

24. ω I J
µ : torsion-free spin connection

25. D̂µ: covariant derivative corresponding to ω I J
µ

26. FI J
µν: curvature of Dµ

27. F̂I J
µν: curvature of D̂µ
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28. κ = 8πG

29. S[e, A]: action for gravity in vierbein-Einstein-Palatini formalism

30. Stetrad[e]: action for gravity in tetrad formulation of GR

31. SM: action for matter field

32. T̂µν: symmetric and conserved energy-momentum tensor

33. Θµν: non-symmetric energy-momentum tensor

34. φ: real scalar field

35. Aµ: Electromagnetic gauge field

36. Fµν: Electromagnetic field tensor

37. ψ: Dirac fermionic field

38. ψ̄: Dirac adjoint of ψ

39. ψD̂µ: torsion-free covariant derivative of ψ

40. ψDµ: torsionful covariant derivative of ψ

41. γI : Dirac gamma matrices

42. LF: Lagrangian for Dirac spinor

43. Lφ: Lagrangian for scalar field

44. Jµ: probability current

45. Ω: conformal factor

46. NYCα
µν: Nieh-Yan torsion

47. InvCα
µν: conformally invariant torsion

48. OSCα
µν: on-shell torsion

49. ξ: conformal parameter for AI J
µ

50. ΨeL =

νL

eL

: left-handed electron-neutrino doublet

51. eR: right-handed electron singlet

52. Φ =

φ+

φ0

: Higgs doublet

53. νe: electron neutrino

54. νµ: muon neutrino

55. νl : neutrino of lepton l

56. Pνl′νl (t): probability of finding a νl′ at time t in a beam that started as νl

57. λ f : coupling constant for fermion-torsion coupling
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58. M: forward scattering amplitude

59. Heff: effective Hamiltonian density

60. n f : number density of fermions

61. ρ: weighted density

62. U: mixing matrix

63. Pconv: probability of conversion

64. Lcc: effective Lagrangian due to charge current interaction

65. Vnc: contribution due to neutral current interaction in the Hamiltonian

66. GF: Fermi constant

67. I f
3L: third component of weak isospin for the left-handed component

68. Q f : charge of fermion

69. θ: mixing angle

70. θ̃: effective mixing angle

71. hµν: metric perturbation

72. f µ
I : co-tetrad perturbation

73. f̃ I
µ: tetrad perturbation

74. aI J
µ : spin connection perturbation

75. F I J
µν: perturbation of FI J

µν

76. S = ψ̄ψ: scalar

77. P = iψ̄γ5ψ: pseudoscalar

78. VI = iψ̄γIψ: vector

79. AI = iψγ5γIψ: axial vector

80. TI J = ψ̄σI Jψ: tensor
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1
I N T R O D U C T I O N

Conventionally, General Relativity is formulated purely from a metric (gµν) point of

view. Unlike other field theories, General Relativity does not have an independent con-

nection and also it is a second order theory. Although we work with the Levi-Civita

connection ∇, the corresponding affine connection Γ is not an independent quantity

because of the following two assumptions

1. Metric compatibility:

∇αgµν = 0 , (1.1)

2. Torsion-free condition:

Γα
µν = Γα

νµ . (1.2)

The above allow us to write the affine connection as the Christoffel symbols Γ̂,

Γα
µν ≡ Γ̂α

µν =
1
2

gαλ
(
∂µgλν + ∂νgµλ − ∂λgµν

)
. (1.3)

The above assumptions imply that Levi-Civita connection is unique torsion-free

connection in Riemannian geometry. I will discuss the importance of the above two

assumptions as to why and when they are justified. The metric compatibility or simply

metricity is a necessity rather than a mere assumption. We want to have quantities

like inner product of vectors, length element invariant under parallel transport. The

1



2 introduction

derivative operator ∇µ defines the parallel transport of a vector vµ along a curve with

tangent tµ by

tµ∇µvν = 0 . (1.4)

We want the inner product gµνvµuν of two vectors vµ and uµ to remain unaltered under

parallel transport i. e.,

tλ∇λ(gµνvµuν) = 0

⇒ tλvµuν∇λgµν = 0 , (1.5)

where, I have used Eq. (1.4) in obtaining the last equation above. This means that the

metric must remain invariant under parallel transport. It is worth mentioning that

there have been some works in non-metricity [1] but I will not cover those in this

thesis.

The second assumption of torsion-free connection is not necessary and it depends

on the matter fields present. In general for bosonic matter torsion does not have any

effect on the equations and it vanishes on-shell. As we will see, for fermionic matter,

the above is not the case. Thus, although in General Relativity torsion is set to zero, it

is always interesting to consider a more general theory with non-zero torsion. The first

attempt to formulate a theory of gravity that included torsion was made by Cartan [2].

Later Einstein attempted to match torsion with electromagnetic field tensor in search

of a unified theory although he was unsuccessful. This is known as Einstein-Cartan

theory. It was further developed by Kibble [3], Sciama [4], and later Hehl [5], relating

torsion to the spin angular momentum of matter, in particular fermionic matter.

The torsion-less limit of torsion gravity cannot always be taken continuously [6,

7]. In this thesis we will be looking primarily at a torsion theory of gravity which in

the torsion-free limit reduces to Einstein’s General Relativity. One way of introducing

the torsion field into the theory as a dynamical variable would be to add it in as the

antisymmetric part of the connection coefficients (Cartan torsion).

Cρ
νµ = Γρ

νµ − Γρ
µν . (1.6)

I will find out the form of curvature tensor for connection with torsion. In General

Relativity without torsion, the Riemann curvature R(X, Y)Z is defined as
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[∇X,∇Y]Z−∇[X,Y]Z = R(X, Y)Z . (1.7)

Taking basis vector fields ∂µ, ∂ν for X, Y respectively and vρ for Z gives

(∇̂µ∇̂ν − ∇̂ν∇̂µ)vρ = R̂ρ
σµν[Γ̂]vσ . (1.8)

I will write quantities corresponding to torsion-free connection with a ‘ ̂ ’ above. In

terms of Christoffel symbols the Riemann tensor of Eq. (1.8) is given by

R̂ρ
σµν = ∂µΓ̂ρ

νσ − ∂νΓ̂ρ
µσ + Γ̂ρ

µλΓ̂λ
νσ − Γ̂ρ

νλΓ̂λ
µσ . (1.9)

Now if∇ is a general affine connection with torsionful Γ, the definition of the Riemann

tensor is modified to

(∇µ∇ν −∇ν∇µ)vρ = Rρ
σµν[Γ]vσ − Cσ

νµ∇σvρ . (1.10)

The definition of the Riemann tensor thus has to be modified in case of non-zero

torsion as

Rρ
σµν[Γ]vσ = (∇µ∇ν −∇ν∇µ)vρ + Cσ

νµ∇σvρ . (1.11)

Let us look at the symmetries and identities of the Riemann tensor with Cartan

torsion and compare them with those in General Relativity.

1.0.1 Skew symmetry

The antisymmetry of the Riemann tensor in each pair is there in both General Relativ-

ity and with non-zero torsion.

Rρσµν = −Rσρµν = −Rρσνµ . (1.12)
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1.0.2 Pairwise symmetry

Unlike in General Relativity, where the Riemann tensor is symmetric under pair ex-

change, with non-zero torsion the symmetry gets lost. The antisymmetry under the

exchange of pairs is given by (see Eq. (A.19))

Rρσµν − Rµνρσ =
1
2

(
∇[ρC|ν|σµ] + Cνλ[ρCλ

σµ] +∇[σC|ρ|µν] + Cρλ[σCλ
µν]

−∇[µC|σ|νρ] − Cσλ[µCλ
νρ] −∇[νC|µ|ρσ] − Cµλ[νCλ

ρσ]

)
. (1.13)

In fact the Ricci tensor which is symmetric in General Relativity, is not so in pres-

ence of torsion.

1.0.3 First Bianchi identity

The first or algebraic Bianchi identity gets modified as (see Eq. (A.16))

Rρ

[σµν]
= ∇[σCρ

µν]
+ Cρ

λ[σ
Cλ

µν] , (1.14)

1.0.4 Second Bianchi identity

The second or differential Bianchi identity also gets modified as (see Eq. (A.24))

∇[λRρ

|σ|µν]
= −Rρ

σα[λ
Cα

µν] . (1.15)

Thus three out of the four identities of the Riemann tensor get changed in case

of non-zero torsion. A detailed calculation of the above identities have been given in

Appendix A.

It is interesting to note that with the help of metric compatibility, the affine connec-

tion can be decomposed in terms of the Christoffel symbols and the so called contorsion

tensor.

Γα
µν = Γ̂α

µν − Sα
µν , (1.16)
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where the contorsion tensor Sα
µν is given by (see Eq. (A.8))

Sα
µν =

1
2

(
C α

µν + C α
νµ − Cα

νµ

)
. (1.17)

Although torsion can be considered as an extension to General Relativity by adding

contorsion tensor to the Christoffel symbols, the way to couple torsion to other fields,

particularly to fermions, is not obvious in this approach. A more transparent and geo-

metrical way of introducing torsion is to work with the first order Palatini formulation

of gravity, using local orthogonal coordinates or frame fields called tetrads or vier-

beins, and a local Lorentz connection called the spin connection [3, 8, 9]. I will call this

vierbein-Einstein-Palatini formalism. In the usual Palatini formalism, the metric and

the connection are considered to be independent variables off-shell and when gravity

is coupled to only bosonic fields, this formalism reduces to the usual metric formal-

ism of General Relativity on-shell where the connection is given by the Christoffel

symbols. In vierbein-Einstein-Palatini formalism the above corresponds to writing the

spin connection in terms of the tetrads and their derivatives. We will see later that if

there are fermionic fields contributing to the stress-energy tensor, the spin connection

has torsion components and remains independent. The vierbein-Einstein-Palatini for-

malism is particularly useful for writing a Lagrangian for fermionic fields on curved

spacetime [10–12], as it highlights the spin connection as being analogous to a gauge

field. In addition, this formalism serves as the link between General Relativity and BF

theories of gravity [13–16]. The Einstein-Hilbert action does not resemble that of other

field theories. Often we are interested in fields that are functions of flat spacetime coor-

dinates and this is where vierbein-Einstein-Palatini formalism comes handy. Because

of the fact that we have an independent spin connection that resembles a gauge field,

vierbein-Einstein-Palatini formalism looks like a field theory of gravity.

1.1 synopsis and plan of thesis

In this thesis I will explore different aspects of the vierbein-Einstein-Palatini formal-

ism. In chapter 2 I will go through the vierbein-Einstein-Palatini formalism. I will

define the variables, write the action and find out the equations of motion. I will

compare the results with those in General Relativity. In chapter 3 I will discuss the

vierbein-Einstein-Palatini formalism in the presence of bosonic and fermionic matter.

I will demonstrate how the presence of fermions yields non-zero torsion thereby lead-
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ing to a departure from General Relativity. In chapter 4 I will discuss the conformal

properties of the vierbein-Einstein-Palatini variables and see how torsion affects the

conformal invariance of fields. In chapter 5 I will use an interesting result of the four-

fermion interaction that results from spin-torsion coupling to answer the source of

neutrino mass and oscillation. Finally in chapter 6 I will consider the perturbations of

the vierbein-Einstein-Palatini variables around arbitrary background and find general

perturbation equation.



2
V I E R B E I N - E I N S T E I N - PA L AT I N I F O R M A L I S M

In the vierbein-Einstein-Palatini formalism, the variables for gravity are the vierbein

or tetrads eI
µ , and the spin connection AI J

µ . One considers local 4d flat space (internal

space) at each point of spacetime manifold isomorphic to the tangent space at that

point. Linear isomorphisms between vector fields and sections of internal space are

given by tetrads. Tetrads can be thought of as frame fields. I will denote spacetime

indices by lowercase Greek letters and internal indices by uppercase Roman letters.

The internal space is a 4-dimensional flat space with metric ηI J = (−1, 1, 1, 1) attached

to each point of spacetime. Raising and lowering of the internal indices are done by η ,

while spacetime indices are raised and lowered by the spacetime metric g , which is

also of signature (−+++) . I can write the basis vector field of the spacetime manifold

λµ as

λµ = eI
µζ I , (2.1)

where ζ I are the internal basis vectors with I running from 0 to 3. Although written

in terms of basis vectors fields, the above holds for all vector fields. The tetrads are

considered to be orthonormal,

gµνeI
µeJ

ν = η I J . (2.2)

This equation can also be thought of as a relation between the spacetime metric

and the internal metric. Clearly, tetrads contain the same information as the spacetime

metric and constitute the main variable in the vierbein-Einstein-Palatini formalism.

Eq. (2.2) can be rewritten as

eI
µeµ

J = δI
J , eµ

I eI
ν = δ

µ
ν , (2.3)

7



8 vierbein-einstein-palatini formalism

where eµ
I ≡ ηI J gµνeJ

ν are the inverse of tetrads, called co-tetrads. It is easy to see that

the determinants of the tetrad and the metric are related by |e| = √−g.

A connection D on the frame bundle is defined by its action on any smooth section

S,

DµSI = ∂µSI + AI
µJS

J , (2.4)

where AI
µJ are the components of what is called the spin connection. It follows from

definition that AI J
µ is antisymmetric in the internal indices,

0 = Dµη I J = ∂µη I J − AI
µKηKJ − AJ

µKη IK

⇒ AI J
µ = −AJ I

µ . (2.5)

The curvature of D can be written as

FI J
µν =

[
Dµ , Dν

]I J

= ∂µ AI J
ν − ∂ν AI J

µ + AI
µK AKJ

ν − AI
νK AKJ

ν

= ∂µ AI J
ν − ∂ν AI J

µ + [Aµ, Aν]
I J . (2.6)

I want to define a general affine connection with the help of the spin connection.

The simplest way is to define the connection as

Γα
µν = AI

µJe
J
νeα

I . (2.7)

The action of the corresponding covariant derivative is given by

∇µvν =∂µvν + Γν
µαvα

=∂µvν + AI
µJe

J
αeν

I vα . (2.8)

But there is a problem with the definition of the affine connection given by Eq. (2.7):

the corresponding covariant derivative is not metric compatible.
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∇αgµν = ∂αgµν − Γβ
αµgβν − Γβ

ανgµβ

= ηI J ∂α(eI
µeJ

ν)− AI
αJηIL eJ

µeL
ν − AI

αJηKI e
J
νeK

µ

= ηI J ∂α(eI
µeJ

ν)− AI J
α eJµeIν − AI J

α eJνeIµ

= ηI J ∂α(eI
µeJ

ν) . (2.9)

Here I have used the antisymmetry of the spin connection in the internal indices. In

order to make the covariant derivative metric compatible, the definition of the affine

connection needs to be modified as

Γα
µν = eα

I ∂µeI
ν + AI

µJe
J
νeα

I . (2.10)

The covariant derivative is to be now understood as

∇µvν =∂µvν + Γν
µαvα

=∂µvν + vαeν
I ∂µeI

α + AI
µJe

J
αeν

I vα . (2.11)

This is a metric-compatible connection, as we see from the following calculation,

∇αgµν = ∂αgµν − Γβ
αµgβν − Γβ

ανgµβ

= ηI J ∂α(eI
µeJ

ν)− ηI Je
J
ν∂αeI

µ − ηI J e
I
µ∂αeJ

ν − AI
αJηIL eJ

µeL
ν − AI

αJηKI e
J
νeK

µ = 0 .

(2.12)

I would like to mention here that the definition of the affine connection given in

Eq. (2.10) is same as the so called tetrad postulate [17]. In order to see this I need to

define a covariant derivative ∇̄ such that its action on a general field PI
µ is given by

∇̄µPI
ν = ∂µPI

ν − Γα
µνPI

α + AI
µJ P

J
ν . (2.13)

In tetrad postulate the covariant derivative ∇ is considered to be compatible with

tetrad i. e.,

0 = ∇µeI
ν = ∂µeI

ν − Γα
µνeI

α + AI
µJe

J
ν . (2.14)
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It is analogous to metric compatibility of the Levi-Civita connection ∇̂. Upon con-

traction with eα
I , the above equation becomes same Eq. (2.10). I will however not use

the definition of the covariant derivative given by Eq. (2.13) in my calculations.

The important point to note here is that Γ is not necessarily symmetric here. This

implies that unlike in General Relativity, we do not have torsion free condition a priori.

In terms of the tetrads and the spin connection, the torsion tensor is given by

Cα
µν ≡ Γα

µν] − Γα
νµ] = eα

I ∂µeI
ν + AI

µJe
J
νeα

I − eα
I ∂νeI

µ + AI
νJe

J
µeα

I . (2.15)

This formalism is thus Palatini formalism where the metric and connection are

taken to be independent variables and torsion is determined by on-shell equations. In

case of minimally coupled bosonic fields, torsion vanishes on-shell thereby implying

the equivalence of vierbein-Einstein-Palatini and metric formalism of General Rela-

tivity. So one could ask why at all we need the tetrads and the spin connection we

could instead just proceed with a general affine connection independent of the metric.

The importance of defining a spin connection is understood when there are fermionic

fields in curved spacetime as we will see later.

I will calculate the Riemann tensor corresponding to the affine connection Γ using

the usual expression

Rρ
σµν = ∂µΓρ

σν − ∂νΓρ
σµ + Γρ

µαΓα
νσ − Γρ

ναΓα
µσ . (2.16)

In terms of the tetrads and the spin connection, the Riemann tensor is given by

Rρ
σµν = FI

µνJe
ρ
I eJ

σ , (2.17)

from which the Ricci tensor and Ricci scalar are obtained respectively as

Rσν = FI
µνJe

µ
I eJ

σ , (2.18)

R = FI J
µνeµ

I eν
J . (2.19)
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The vierbein-Einstein-Palatini action is the Einstein-Hilbert action for gravity where

one replaces the Ricci scalar by Eq. (2.19), and the metric determinant by that of tetrads,

S[e, A] =
1

2κ

∫
M
|e|d4x FI J

µνeµ
I eν

J , (2.20)

where, κ = 8πG. It should be noted that although constructed from the Einstein-

Hilbert action, the vierbein-Einstein-Palatini action is not same as the Einstein-Hilbert

action. This is because in the Einstein-Hilbert action the only variable is the metric

tensor and as a result it is of second order in derivatives. The vierbein-Einstein-Palatini

action is first order in derivatives until the connection has been solved and substituted.

This action is first extremised under variations of the vierbein eµ
I , keeping AI

µJ fixed.

Variation of the determinant gives

δ|e| = −|e| eI
µδeµ

I . (2.21)

Using the antisymmetry of FI J
µν, I can then derive the field equations quite easily,

2FI J
λνeλ

I − eJ
νFKL

ρσ eρ
Keσ

L = 0 . (2.22)

Contracting with eµJ and using Eq. (2.18) produces the familiar form

Rµν −
1
2

gµνR = 0 . (2.23)

This equation would be the vacuum Einstein’s equation if I could show that ∇ is

torsion free, i. e., if Γα
µν is symmetric in µ, ν. For this purpose, I vary the action of

Eq. (2.20) again, but this time with respect to the spin connection AI
µJ , keeping the

vierbein fixed. To do this I first simplify the action using the antisymmetry of the spin

connection,

S[e, A] =
∫
|e|d4x

(
∂µ AI J

ν (eµ
I eν

J − eµ
J eν

I ) + [Aµ, Aν]
I Jeµ

I eν
J

)
. (2.24)

Variation with respect to AI J
ν produces the equation

−eα
K∂µeK

α (e
µ
I eν

J − eµ
J eν

I )− eν
J ∂µeµ

I + eν
I ∂µeµ

J − eµ
I ∂µeν

J + eµ
J ∂µeν

I

+AK
µIe

µ
Keν

J − AK
µJe

µ
Keν

I − AK
µIe

µ
J eν

K + AK
µJe

µ
I eν

K = 0 . (2.25)
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In order to solve this equation for the spin connection, first I contract it with eνL and

then take trace in LJ. This helps to evaluate the term AK
µIe

µ
K a

AK
µIe

µ
K = ∂µeµ

I + eµ
I eα

K∂µeK
α . (2.26)

It is necessary to evaluate and then to get rid of AK
µIe

µ
K from Eq. (2.25) because, other-

wise I cannot remove eµ
K from the term and solve for the spin connection. Substituting

Eq. (2.26) in Eq. (2.25) gives

AµLIe
µ
J + AµJLeµ

I = eνLeµ
J ∂µeν

I − eνLeµ
I ∂µeν

J . (2.27)

Cyclic permutation in I JL and then contraction with suitable tetrad produces the fol-

lowing expression for the spin connection.

AI J
µ ≡ ω I J

µ =
1
2

eµK

(
ΘKI J −ΘI JK −ΘJKI

)
, (2.28)

where for convenience I have defined the quantity ΘI JK as

ΘI JK = eI
ν

[
eµJ∂µeKν − eµK∂µeνJ

]
. (2.29)

Eq. (2.28) is the the torsion-free spin connection and I have denoted it as ω I J
µ . I can

calculate Γ by substituting this expression in Eq. (2.10) and see that

Γν
ρλ = Γν

λρ ≡ Γ̂ν
λρ . (2.30)

Thus I have recovered the Christoffel symbols on-shell and∇ can thus be identified

as the unique metric-compatible torsion-free connection on the spacetime. Although in

usual General Relativity the torsion-free condition is imposed a priori, in the vierbein-

Einstein-Palatini formalism only metric-compatibility follows from the definition of Γ ;

the torsion-free condition comes from the equations of motion. Thus Rµν in Eq. (2.23)

can be replaced by R̂µν , and we see that even though I started with an independent

connection, I have recovered General Relativity on-shell. Eq. (2.28) is the expression for

the spin connection in the absence of matter, or more precisely in the absence of matter

which couples to the spin connection. Thus, in vacuum the vierbein-Einstein-Palatini

formalism is equivalent to General Relativity on-shell i. e., upon using the equation of

motion of the spin connection.
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In the presence of matter the absence of torsion is not guaranteed. I will consider

vierbein-Einstein-Palatini action with matter field to see this in more detail,

STotal =
1

2κ

∫
|e| d4x FI J

µνeµ
I eν

J + SM . (2.31)

Here the components of the spin connection AI
µJ are again taken to be independent

variables. The equation of motion, obtained by varying this action with respect to the

tetrad, is

FI J
αµeα

I −
1
2

eJ
µFKL

αβ eα
Keβ

L = κΘJ
µ , (2.32)

where I have written

ΘJ
µ = −δSM

δeµ
J

. (2.33)

After contraction with a suitable tetrad, I get the familiar form

Rµν −
1
2

gµνR = κΘµν . (2.34)

It should be noted that Θµν = ΘJ
µeJν is not the usual energy-momentum tensor for

the matter, because for Θµν to be energy-momentum tensor, the left hand side of the

above equation must be symmetric and torsion-free. If the spin connection couples to

matter, the right hand side of Eq. (2.25) will not vanish and in general, the connection

will be given as

AI J
µ = ω I J

µ + ΛI J
µ , (2.35)

where ΛI J
µ corresponds to the contorsion tensor defined in Eq. (1.17) characterises the

torsion part of the connection. It should be noted that the Λ term in the equation

above comes from the coupling of the spin connection to the matter field considered.

As a result this term will always be suppressed by κ. This will be clear once I consider

specific fields. I will now discuss how Λ relates to torsion. In terms of Λ, the torsion

tensor of Eq. (2.15) can be written as

Cα
µν = ΛI

µJe
J
νeα

I −ΛI
νJe

J
µeα

I . (2.36)
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Using Eq (2.35) and Eq. (1.17), we see that Λ plays the role of contorsion tensor in the

vierbein-Einstein-Palatini formalism,

Sα
µν = −ΛI

µJe
J
νeα

I . (2.37)

We will see later that it is the contorsion tensor that couples to spinors, ultimately

leading to non-zero torsion [12].

I will discuss how the proper energy-momentum tensor can be obtained on the

right hand side of Eq. (2.34). First I need to use the expression of the spin connection

given by Eq. (2.35) in Eq. (2.34) and then move all the terms involving Λ to the right

hand side. The resulting equation is obtained as

R̂µν −
1
2

gµνR̂ = κT̂µν +O(κ2) + · · · , (2.38)

where quantities with a hat ‘ ̂ ’ over them are constructed with the torsion-free con-

nection, as before. T̂µν is the symmetric and conserved energy momentum tensor and

higher order terms are contributions due to dynamically generated torsion. The conser-

vation of the energy-momentum tensor is to be understood in terms of the torsion-free

Levi-Civita connection. The procedure for obtaining a symmetric energy-momentum

tensor of the spinor field, in particular, was discussed in [12].

I will also discuss the tetrad-only (or simply tetrad) formalism where we have the

torsion-free condition a priori. This is thus identical to General Relativity.

2.1 tetrad formulation of general relativity

In order to recover usual General Relativity from the vierbein-Einstein-Palatini formal-

ism, one needs to work with the torsion-free spin connection ω.

(DµS)I = ∂µSI + ω I
µJS

J , (2.39)

where ω I
µJ is the torsion-free spin connection of Eq. (2.28). To identify the tetrad for-

mulation with General Relativity, the Christoffel symbols of the metric formalism are

written using the vierbein and spin connection

Γ̂α
µν = eα

I ∂µeI
ν + ω I

µJe
J
νeα

I . (2.40)
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Metric compatibility of the corresponding Levi-Civita connection helps to express ω

in terms of tetrads as given in Eq. (2.28).

As before, I can calculate the Riemann tensor, Ricci tensor and Ricci scalar by suc-

cessive contraction with the vierbein,

R̂ρ
σµν = F̂I

µνJe
ρ
I eJ

σ , (2.41)

R̂σν = F̂I
µνJe

µ
I eJ

σ , (2.42)

R̂ = F̂I J
µνeµ

I eν
J . (2.43)

Here F̂I J
µν is the curvature of the connection D. Here Riemann tensor satisfies all the

symmetries and identities as it does in General Relativity. The tetrad action for gravity

is the Einstein-Hilbert action in which the Ricci scalar has been replaced by Eq. (2.19),

and the metric determinant by that of tetrads,

Stetrad[e] =
1

2κ

∫
|e|d4x F̂I J

µνeµ
I eν

J . (2.44)

Variation of the action with respect to the tetrads produces the equation

2F̂I J
λνeλ

I − eJ
ν F̂KL

ρσ eρ
Keσ

L = 0 . (2.45)

Contracting with eµJ , and using Eq. (2.18), I get the familiar form

R̂µν −
1
2

gµνR̂ = 0 . (2.46)

If I include matter fields, the tetrad action reads

STotal =
1

2κ

∫
|e| d4x F̂I J

µνeµ
I eν

J + SM , (2.47)

where SM =
∫
|e| d4xLM is the action for any matter field present. The equation of

motion obtained by variation with respect to the tetrad is thus

F̂I J
αµeα

I −
1
2

eJ
µ F̂KL

αβ eα
Keβ

L = κT̂µαeαJ , (2.48)

where T̂µα is the usual energy-momentum tensor for the matter. As before, I can con-

tract this equation with the tetrad to obtain the familiar form, Ĝµν = κT̂µν .





3
M AT T E R F I E L D S

In this chapter, I will consider different matter fields in the vierbein-Einstein-Palatini

formalism. I will demonstrate that for bosonic fields, torsion either vanishes on-shell

or it is taken to be zero a priori for the sake of gauge symmetry. In such cases one can

proceed with a torsion-free tetrad formalism identical to General Relativity. But we

will see that in case of fermionic field, torsion has effects on the Einstein’s equation as

well as the Dirac equation.

3.1 scalar field

The total action with massless real scalar field is given by

S = S[e, A]− 1
2

∫
|e|d4x∇µφ∇µφ , (3.1)

where S[e, A] is the vierbein-Einstein-Palatini action of Eq. (2.20). It should be noted

that although I have written the derivative of the scalar field with ∇µ, it is essentially

the partial derivative ∂µ. In other words it should not matter whether I take the deriva-

tive with torsion-free ∇̂µ, torsionful ∇µ or ordinary partial derivative. The equation

obtained by extremising the action with the scalar field is

∇µ∇µφ = 0 . (3.2)

Although the above equation contains the torsionful connection it is essentially the

same as the equation with the torsion-free connection. I can break the kinetic term in

the following way

17
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∇µ∇µφ = ∇̂µ∇̂µφ− Sµ
αµ∇αφ . (3.3)

Recalling the expression for the contorsion tensor from Eq. (1.17), we see that the last

term in the above expression vanishes because of the antisymmetry of the contorsion

tensor in the first and last indices. Thus I can neglect torsion if I am dealing with

minimally coupled scalar field alone. I will consider an interesting example of non-

minimal scalar field in chapter 4 and see how it can potentially couple to torsion.

I will also extremise the action with respect to the tetrads to find out Einstein’s

equation. The equation is obtained as

2FI J
µνeµ

I − eJ
νFKL

αβ = 2κ(eJµ∇µφ∇νφ− 1
2

eJ
ν∇αφ∇αφ) . (3.4)

Upon contraction with suitable tetrad, the above equation can be written as

Rµν −
1
2

gµνR = κ

(
∇µφ∇νφ− 1

2
gµν∇αφ∇αφ

)
, (3.5)

where I have used the definition of Ricci tensor and Ricci scalar from Eq. (2.18) and

Eq. (2.19) respectively. Also, because the scalar Lagrangian does not contain the spin

connection, variation of the total action with respect to it gives the torsion-free expres-

sion of the connection. I can thus identify the above equation with Einstein’s equation

in General Relativity with scalar field.

3.2 electromagnetic field

Usually in the case Maxwell Lagrangian a torsionful connection is not considered and

consequently there is no equation of motion for torsion. This is because a torsionful

derivative breaks the gauge symmetry of electromagnetic field. I will consider the total

action with em field to demonstrate this.

S =
1

2κ

∫
|e|d4xFI J

µνeµ
I eν

J −
1
4

∫
ed4xFµνFµν. (3.6)

Here,

Fµν = ∇µ Aν −∇ν Aµ, (3.7)
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Usually in differential form notation F is defined as F = dA. In case of torsion-free

connection, dA can be written as in Eq. (3.7). But here ∇ is the connection that has

torsion. Writing the affine connection as

Γα
µν = Γ̂α

µν − Sα
µν, (3.8)

I get

Fµν = ∇̂µ Aν − ∇̂ν Aµ − Cα
µν Aα, (3.9)

with Sα
µν being the contorsion tensor. In the above expression of the field tensor only

the antisymmetric part of contorsion appears because the symmetric part cancels out.

I will denote the torsion-free part of the field tensor as

F̂µν = ∇̂µ Aν − ∇̂ν Aµ, (3.10)

which is same as ∂µ Aν − ∂ν Aµ. The total action now becomes

S =
1

2κ

∫
|e|d4xFI J

µνeµ
I eν

J −
1
4

∫
|e|d4xF̂µν F̂µν +

1
2

∫
|e|d4xF̂µνCα

µν Aα

−1
4

∫
|e|d4xCα

µνCβµν Aα Aβ. (3.11)

The point to note here is that the Lagrangian of electromagnetic field in the above

action is not gauge invariant because of the last two terms. Thus torsion breaks gauge

symmetry of the field.

It is apparent from the above that for the case of bosonic fields, torsion either does

not have any effect on the field equation or it is not considered for the sake of preserv-

ing gauge symmetry. In these cases I can assume the torsion-free condition a priori

where the spin connection is written completely in terms of the tetrads similar to the

Christoffel symbols in General Relativity. I am thus working in the tetrad formulation

of General Relativity as discussed in chapter 1.

3.3 fermionic field

For fermions, I will consider both tetrad formulation and vierbein-Einstein-Palatini

formalism. First I will discuss fermionic fields in the torsion-free tetrad formulation.
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Next I will consider the vierbein-Einstein-Palatini formalism and compare the equa-

tions with those in the tetrad formulation. We will see how inclusion of torsion gives

rise to extra terms in the equations.

3.3.1 Fermionic field in tetrad formalism

The advantage of having the spin connection is that I can write an action for fermionic

fields in curved spacetime. The γ-matrices are defined on the flat internal space and

then brought to the spacetime using tetrads, while the covariant derivative on the

fermionic field is defined in terms of the spin connection. In general, the spin connec-

tion is treated as an independent variable while considering the fermionic field [10–12,

18]. I will discuss this in Sec. 4.2. When I restrict to the torsion-free case however, the

connection is not a free variable, but ω I J
µ of Eq. (2.28). The total action of gravity with

a minimally coupled fermion in this case is written as [18]

S[e, A, ψ] =
1

2κ
Stetrad[e] +

∫
|e|d4x

[
i
2

(
ψ̄γKeµ

K
ψD̂µψ− (ψ̄γKeµ

K
ψD̂µψ)†

)
+ imψ̄ψ

]
,

(3.12)

where Stetrad[e] is the gravity action given in Eq. (2.44). The covariant derivative ψD̂µ

acts on the spinor ψ as

ψD̂µψ = ∂µψ− i
4

ω I J
µ σI Jψ , (3.13)

where σI J =
i
2 [γI , γJ ] .

I will calculate the second term in the fermionic Lagrangian

(ψ̄γKeµ
K

ψD̂µψ)†

= (ψ̄γK∂µψ)†eµ
K +

i
4

ω I J
µ eµK(ψ̄γKσI Jψ)

†

= ∂µψ†γK†
γ†

0ψ +
i
4

ω I J
µ eµKψ†σ†

I Jγ
†
Kγ†

0ψ

= ∂µψ̄γKeµ
Kψ +

i
4

ω I J
µ eµKψ̄σI JγKψ . (3.14)
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Here I have used the properties of γ and σ-matrices from Appendix D. The fermionic

Lagrangian can thus be written as

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
ω I J

µ eµKψ̄{γK, σI J}ψ
)
+ imψ̄ψ . (3.15)

The γ and σ matrices carry internal flat space indices and have the properties for

metric signature (− + ++). It should be noted here that for the choice of signature

(+−−−) , which is popular in quantum field theory, γ needs to replace by −iγ in all

of these expressions (see Appendix D).

Extremising the action of Eq. (3.12) with respect to the tetrad and the fermion, the

equations of motion are obtained as

δeν
J : R̂µν −

1
2

gµνR̂ = κT̂µν(ψ, ψ̄) , (3.16a)

δψ̄ : 2γKeµ
K∂µψ + eα

I ∂µeI
α γKeµ

Kψ + ∂µeµ
KγKψ− i

4
ω I J

µ eµK{γK, σI J}ψ + mψ = 0 .

(3.16b)

In addition, by varying ψ I get an equation which is the adjoint of Eq. (3.16b). Here

T̂µν(ψ, ψ̄) is the symmetric and conserved energy-momentum tensor of the fermionic

field,

T̂µν(ψ, ψ̄) =
i
4

[
(∂µψ̄)γIψeI

ν − ψ̄γI(∂µψ)eI
ν +

i
4

ω I J
µ eK

ν ψ̄{γK, σI J}ψ + (µ↔ ν)

]
+imgµνψ̄ψ .

(3.17)

It should be noted that for obtaining the above expression for T̂µν, I have also varied

the spin connection ω I J
µ with respect to tetrads. In fact the terms that come from the

variation of the spin connection, along with Eq. (3.16b), give the symmetric form of

T̂µν . Eq. (3.16b) is the Dirac equation in torsion-free curved spacetime. I can cast the

Dirac equation in a familiar form by using the expression for ω I J
µ of Eq. (2.28),

γKeµ
K

ψD̂µψ + mψ = 0 . (3.18)
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3.3.2 Fermionic field in vierbein-Einstein-Palatini formalism

In the tetrad formulation we saw how one can write fermions in gravity or more

specifically torsion-free gravity. In the vierbein-Einstein-Palatini formalism fermionic

field becomes more interesting because of its ability to couple to torsion. I will consider

the action to see this in detail.

S[e, A, φ, ψ] = S[e, A] +
∫
|e| d4x

[
i
2

(
ψ̄γKeµ

K
ψDµψ− (ψ̄γKeµ

K
ψDµψ)†

)
+ imψ̄ψ

]
,

(3.19)

where, the derivative ψD acts on the spinor ψ via the spin connection A ,

ψDµψ = ∂µψ− i
4

AI J
µ σI Jψ . (3.20)

As before, the fermionic Lagrangian can be written in the following manner,

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
AI J

µ eµKψ̄{γK, σI J}ψ
)
+ imψ̄ψ . (3.21)

Extremising the action with respect to the different variables produces the following

equations.

δeν
J : Rµν −

1
2

gµνR =
iκ
2

[
(∂νψ̄) γIψeI

µ − ψ̄γI(∂νψ)eI
µ +

i
4

AI J
ν eK

µ ψ̄{γK, σI J}ψ
]

+ iκmgµνψ̄ψ , (3.22a)

δAI J
ν : AI J

µ = ω I J
µ [e] +

κ

8
ψ̄{γK, σI J}ψeK

µ , (3.22b)

δψ̄ : 2γKeµ
K∂µψ + eα

I ∂µeI
α γKeµ

Kψ + ∂µeµ
KγKψ− i

4
AI J

µ eµK{γK, σI J}ψ + mψ = 0 .

(3.22c)

I can simplify Eq. (3.22c) by using identities of γ and σ matrices; and the definition of

torsion in Eq. (2.15),

γKeµ
K∂µψ +

1
2

Cα
µαeµ

KγKψ− i
4

AI J
µ eµKγKσI Jψ + mψ = 0. (3.23)

Let us now see what happens to the above equation if I use the on-shell expression

of the spin connection given by Eq. (3.22b). The first term in this expression is exactly



3.3 fermionic field 23

the same as in Eq. (2.28). The last term has appeared due to the fermionic field. This

term can be identified with the contorsion ΛI J
µ which was defined in Eq. (2.35),

ΛI J
µ =

κ

8
ψ̄{γK, σI J}ψeK

µ . (3.24)

I can use the identity

{σI J , γK} = 2εI JKLγLγ5 , (3.25)

to write ΛI J
µ as

ΛI J
µ =

κ

4
εI JKLψ̄γLγ5ψeKµ . (3.26)

This term results in the following non-vanishing expression for the on-shell torsion

tensor:

OSCα
µν =

κ

2
εI JKLψ̄γLγ5ψeα

I eJµeKν . (3.27)

Clearly, on-shell torsion, generated by a fermion source, is totally antisymmetric. If I

identify the torsion tensor in Eq. (3.23) with on-shell torsion tensor, we can see that the

second term in the equation goes away due to the total antisymmetry of the torsion

tensor given by Eq. (3.27). Thus I am left with the equation

γKeµ
K∂µψ− i

4
AI J

µ eµKγKσI Jψ + mψ = 0 (3.28)

or simply

γKeµ
K

ψDµψ + mψ = 0 . (3.29)

This looks like the equation I obtained for fermionic field in tetrad formulation, but it

is different in the sense that the spin connection, and thus the derivative, now contain

non-zero torsion. If I now use Eq. (3.22b) for the on-shell expression of the spin con-

nection, I get a nonlinear spinor equation with cubic term resulting from torsion, as

has been noted in [12, 19],

γKeµ
K∂µψ− i

4
ω I J

µ eµKγKσI Jψ + mψ− iκ
64

ψ̄{γK, σI J}ψ{γK, σI J}ψ = 0 . (3.30)
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I will also use the on-shell expression of the spin connection given by Eq. (3.22b),

and the Dirac equation of Eq. (3.22c) in Eq. (3.22a). After some lengthy but straightfor-

ward calculations I get the following equation.

R̂µν −
1
2

gµνR̂ = κT̂µν(ψ, ψ̄)− 3κ2

16
gµνψ̄γIγ5ψψ̄γIγ5ψ . (3.31)

Here, T̂µν(ψ, ψ̄) is the symmetric and conserved energy-momentum that comes from

the torsion-free matter Lagrangian as obtained in Eq. (3.17), which comes from a

torsion-free theory of gravity. I should mention how I have obtained this symmet-

ric energy-momentum tensor. As we can see from Eq. (3.22a), in contrast to tetrad

formalism, the right hand side does not contain the symmetric energy-momentum

tensor. This is because the left hand side contains torsion components and is not sym-

metric either. The idea is to use the on-shell expression of Λ from Eq. (3.24) in the

Einstein’s equation. There are two ways I can proceed to obtain the symmetric energy-

momentum. The first way is to directly use the expression for Λ in the quantities on

the left hand side of Eq. (3.22a). I find that the Ricci scalar part is not affected by this

but the Ricci tensor breaks into symmetric and antisymmetric parts as

Rµν = R̂µν +
1
2
(Θµν −Θνµ) , (3.32)

where I have denoted the O(κ) terms of the right hand side of Eq. (3.22a) as Θµν.

The antisymmetric part above, when taken to the right hand side, gives the symmetric

energy-momentum tensor. The second way is to find the symmetric and antisymmetric

components of Eq. (3.22a). In this case I can find the antisymmetric component directly.

For the symmetric component of Rµν, I can show that it is the same as the Ricci tensor

calculated from the torsion-free spin connection ω.

The conservation of Tµν(ψ, ψ̄) is to be understood in terms of the torsion-free deriva-

tive operator ∇̂. The additional term of O(κ2) has appeared due to torsion. Using

generalised Fierz identities for the spinor field [20–22], I can write Einstein’s equations

as

R̂µν −
1
2

gµνR̂ = κT̂µν(ψ, ψ̄)− gµν
3κ2

16
(
(ψ̄γ5ψ)2 − (ψ̄ψ)2) . (3.33)

I will conclude this section with a discussion on the nonlinear Dirac Eq. (3.30). As

already mentioned, the effect of torsion on the equation is realised through the cubic

term. I can write an effective Lagrangian without torsion that gives me the same equa-
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tion as obtained above. To do this I need to modify the torsion-free spinor Lagrangian

of (3.15) with the addition of a quartic term as

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
ω I J

µ eµKψ̄{γK, σI J}ψ

− iκ
64

ψ̄{γK, σI J}ψψ̄{γK, σI J}ψ
)
+ imψ̄ψ . (3.34)

I can write the above Lagrangian in a better form using Fierz identities as

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

2
εI JKLω I J

µ eµKψ̄γLγ5ψ

−3iκ
8
(
(ψ̄γ5ψ)2 − (ψ̄ψ)2))+ imψ̄ψ . (3.35)

This Lagrangian also produces the O(κ2) term appearing in the Einstein’s equation.

Also it gives the same nonlinear Dirac equation of (3.30).

3.3.3 Conservation of spinor current

In order to find the current conservation equation, first I need to obtain the equation

of motion of ψ̄. There are two ways to obtain the equation. I can either extremise

the action with respect to ψ or take adjoint of the ψ-equation (3.28). Either way, the

equation is obtained as

∂µψ̄γKeµ
K +

i
4

AI J
µ eµKψ̄σI JγK −mψ̄ = 0 . (3.36)

Now following the usual procedure of pre-multiplying Eq. (3.28) with ψ̄, post-multiplying

Eq. (3.36) with ψ and adding them together gives

∂µ(ψ̄γKψ) +
i
4

AI J
µ eµKψ̄[σI J , γK]ψ = 0 . (3.37)

Now, using the expression for the commutator from Eq. (D.10) the above equation can

be written as
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eµ
K∂µ(ψ̄γKψ) +

i
4

AI J
µ eµKψ̄2i(ηJKγI − ηIKγJ)ψ = 0

⇒ eµ
K∂µ(ψ̄γKψ) + AI J

µ eµ
I ψ̄γJψ = 0

⇒ ∂µ(ψ̄γKeµ
Kψ)− ψ̄γKψ∂µeµ

K + AI J
µ eµ

I ψ̄γJψ = 0

⇒ ∂µ(ψ̄γKeµ
Kψ)− ψ̄γLψeν

LeK
ν ∂µeµ

K + AI J
µ eµ

I eJνeνKψ̄γKψ = 0

⇒ ∂µ Jµ + (eµ
I ∂µeI

ν + AI J
µ eµ

I eJν)Jν = 0

⇒ ∇µ Jµ = 0 , (3.38)

where, Jµ = eµ
I ψ̄γIψ is the spinor current in curved spacetime. In writing the last step,

I have used the definition of Γ from Eq. (2.10). Although I have written the equation

with torsionful derivative ∇, it is same as the torsion-free derivative ∇̂. The reason for

this is that it is a divergence equation where the effect of torsion vanishes by the same

argument given in (3.1).



4
C O N F O R M A L T R A N S F O R M AT I O N

In this chapter1 I will investigate conformal transformations of the vierbeins and the

spin connection. The motivation for this investigation is twofold. First, if the vierbein-

Einstein-Palatini action is exactly equivalent to the second-order Einstein-Hilbert ac-

tion of gravity, all matter fields should couple to gravity ‘in the same way’ in both for-

mulations. More precisely, the corresponding stress-energy tensors for matter should

be equivalent in the two formulations, and matter fields ought to transform in the

same way in both the formulations. While this is a trivial issue for minimally coupled

matter fields, it turns out that for non-minimally coupled fields, such as the confor-

mally coupled scalar which I investigate here, the field equations behave differently

under conformal transformations in the two formulations. The other motivation is to

study the conformal transformation of spin connection, which is useful in studying

the conformal properties of fermions propagating on a curved background. Since the

spin connection has torsion components which couple to fermions, its behaviour under

conformal transformations affects that of fermions.

I will consider different possibilities of how torsion is affected by conformal trans-

formations. First I will discuss Nieh-Yan theory [23], in which torsion was considered

to “play the role of gauge potential for the conformal transformation group." However,

when torsion is taken to zero, this theory does not reduce to pure Einstein gravity, i.e.,

General Relativity based on pure Riemannian geometry. Next I will discuss a theory

where torsion remains invariant under conformal transformations. I will show that

Nieh-Yan theory and the one with invariant torsion correspond to two limits of a gen-

eral transformation of the spin connection which interpolates between these two limits.

I will also consider dynamically generated or on-shell torsion which is the expression

for torsion obtained by solving the equation of motion. I will show that torsion, dy-

1 The work reported here is based on the paper "Different types of torsion and their effect on the dynamics
of fields", Subhasish Chakrabarty and Amitabha Lahiri, Eur. Phys. J. Plus 133, 6, 242 (2018).

27
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namically generated by the Dirac field as in [12, 24], transforms homogeneously under

conformal transformation. In other words, unlike in Nieh-Yan theory, on-shell torsion

does not have any inhomogeneous conformal transformation. I will also discuss the

possibility of on-shell torsion being generated by a conformal scalar field. However, for

the scalar field, I will show that on-shell torsion indeed transforms inhomogeneously.

Conformal transformations were introduced by Weyl in an attempt to unify elec-

tromagnetism and general relativity [25], and have been useful in studying various

properties of curved spacetimes [26]. Conformal transformations have been widely

used in studying asymptotic flatness and initial value problem [27–31], propagation

of massless fields on a gravitational background [32–40] and exact solutions [41–47].

Conformal invariance is required where scale-independence is fundamental to our

understanding of the system. Conformal invariance is also important in the study of

quantum field theory on curved spacetime [48–51]. It has been suggested that cos-

mology based on conformal gravity, or more specifically based on the Weyl tensor,

can provide alternatives to the usual cosmologies with dark matter and cosmological

constant [52, 53].

A conformal transformation is the scaling of the spacetime metric gµν with a strictly

positive, smooth function Ω2,

gµν → Ω2gµν . (4.1)

In this nomenclature and related notational conventions, I have followed [27]. I

should mention that some authors call this a Weyl transformation, reserving the name

‘conformal transformations’ for what are called ‘conformal isometries’ in [27] (for a

discussion on the nomenclature, see [54]). A conformal isometry φ on a manifold

M is a diffeomorphism φ : M → M such that its action on the metric is given by

φ∗gµν = Ω2gµν .

Conformal transformations alter lengths of spacetime intervals, but preserve angles.

The conformally transformed spacetime and the original one have the same causal

structure. Since Ω is a function of spacetime, the transformation of metric affects differ-

ent entities like the Christoffel symbols, Riemann tensor and hence the Einstein-Hilbert

action. For gauge fields in four dimensions, the matter action remains invariant under

conformal transformation, while for other kinds of matter fields like the scalar, the
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action needs to be modified. Conformal transformation of the metric transforms the

Christoffel symbols as

Γ̂α
µν → Γ̂α

µν + δα
(µ∇̂ν)

ln Ω− gµνgαβ∇̂β ln Ω , (4.2)

where the symmetric combination is defined as A(αBβ) = AαBβ + AβBα . The quantities

which are defined using the torsion-free connection will be denoted with a hat ‘̂ ’ as

in previous chapters. The transformation of torsion-free Ricci scalar can be written as

R̂→ Ω−2{R̂− 2(n− 1)gµν∇̂µ∇̂ν ln Ω

− (n− 1)(n− 2)(∇̂µ ln Ω)(∇̂µ ln Ω)} . (4.3)

This is the general formula in n spacetime dimensions. In this chapter I will be con-

cerned with the case where n = 4.

The equation of motion of massless scalar field,

∇̂µ∇̂µφ = 0 , (4.4)

is not invariant under conformal transformation. The remedy is to modify the equation

with the addition of a non-minimal term,

∇̂µ∇̂µφ− 1
6

R̂φ = 0 . (4.5)

The above equation can be obtained from the total action

S(φ, g) = SEH [g]−
∫ √

−g d4x
[

1
2

gµν∂µφ∂νφ +
1

12
R̂φ2

]
, (4.6)

where, SEH [g] is the Einstein-Hilbert action. This matter part of the action is invariant

under the conformal transformation of Eq. (4.1) provided the scalar field transforms

as

φ→ Ω−1φ . (4.7)
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Variation of the action with respect to the metric produces the energy-momentum

tensor corresponding to the conformal scalar field, which now includes a part that

depends on the geometry because of the R̂φ2 term,

T̂µν = ∂µφ∂νφ− 1
2

gµνgαβ∂αφ∂βφ +
1
6

Ĝµνφ2 +
1
6

[
gµν∇̂σ∇̂σφ2 − ∇̂µ∇̂νφ2

]
. (4.8)

This T̂µν is a conserved tensor as expected,

∇̂µT̂µν = 0 . (4.9)

In this chapter I will discuss the conformal transformation of the vierbein and the

spin connection and investigate the conformal properties of the action and equations

in the vierbein-Einstein-Palatini formalism. In Sec. 4.1, I will go through the basics of

conformal transformation, conformally invariant massless scalar field and fermionic

field in the tetrad formulation of General Relativity. I will consider massless fields be-

cause a mass term usually breaks conformal symmetry. In Sec. 4.2, I will investigate the

conformal transformation of the vierbein and the spin connection. The spin connection

is an independent variable at the level of action and thus its transformation remains

indeterminate at this stage. It is however possible to make different choices of trans-

formations without disturbing metric compatibility. In this respect I will discuss two

such choices: one with inhomogeneously transforming torsion (Nieh-Yan theory) and

other with invariant torsion which does not seem to have been discussed in literature

before. In Sec. 4.3 I will consider the conformal properties of dynamically generated

torsion with specific fields. I will write a general transformation of the off-shell spin

connection which, in suitable limits, reduces to Nieh-Yan theory or invariant torsion.

4.1 conformal transformation in tetrad formulation

In this section I will consider the conformal transformation of different entities in

the torsion-free tetrad formulation. Because this formalism is equivalent to General

Relativity, we can expect that fields and their actions will transform under conformal

transformations in the same way in the tetrad formalism as they do in the usual metric

formulation of General Relativity.
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The transformation of gµν suggests that the tetrads should transform in the follow-

ing manner,

eI
µ → ΩeI

µ , (4.10)

while the co-tetrads should transform as

eµ
I → Ω−1eµ

I . (4.11)

The conformal transformation of the spin connection, given by ω I J
µ of Eq. (2.28),

can be found from the transformation of the vierbein alone,

ω I
µJ → ω I

µJ + (eI
µeν

J − eµJeνI)∂ν ln Ω . (4.12)

It was argued in [55] that the above equation is the conformal transformation of

the spin connection even in the presence of fermionic matter. We will however see

in Sec. 4.3.2 that when the spin connection is treated as an independent variable, the

above transformation may not be quite correct.

Eq. (4.12) leads to the following transformation of the Ricci scalar

F̂I J
µνeµ

I eν
J → Ω−2

[
F̂I J

µνeµ
I eν

J − 6∇̂µ∇̂µ ln Ω− 6
(
∇̂µ ln Ω

) (
∇̂µ ln Ω

)]
. (4.13)

The covariant derivative here is to be understood as being written in terms of ω ,

∇̂µVν = ∂µVν − eα
I ∂µeI

νVα −ω I
µJe

J
νeα

I Vα . (4.14)

This is the same torsion-free covariant derivative corresponding to the Christoffel sym-

bols written in a different form.

4.1.1 Conformal scalar in tetrad formulation

I will consider the conformal scalar field in tetrad formulation in this section. In terms

of tetrads the action of Eq. (4.6) can be written as

S[e, A, φ] = Stetrad[e, A] +
∫
|e|d4x

[
−1

2
eµ

I eνI∂µφ∂νφ− 1
12

F̂I J
µνeµ

I eν
J φ2
]

. (4.15)
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Extremising the action with respect to the independent variables produces the fol-

lowing equations of motion.

δeν
J : R̂µν −

1
2

gµνR̂ = κT̂µν , (4.16a)

δφ : ∇̂µ∇̂µφ− 1
6

R̂φ = 0 . (4.16b)

Here I have contracted the equations with suitable tetrads to cast them in familiar

forms as in General Relativity. Tµν is the same conserved energy momentum tensor

obtained in Eq. (4.8) using the metric formulation of General Relativity. The scalar

field equation above is invariant under the conformal transformation of tetrads and φ.

These results are expected as the tetrad formulation is nothing but General Relativity

with different variables.

4.1.2 Conformal invariance of fermionic field in tetrad formulation

Let us recall the fermionic Lagrangian given in Eq. (3.15).

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
ω I J

µ eµKψ̄{γK, σI J}ψ
)

. (4.17)

The above Lagrangian transforms homogeneously with conformal weight of −4 under

conformal transformation of tetrads, provided the fermionic field transforms as

(ψ, ψ̄)→
(

Ω−
3
2 ψ, Ω−

3
2 ψ̄
)

. (4.18)

The covariance of the Lagrangian can be seen by noting that the inhomogeneous trans-

formations of the first two terms cancel out and for the last term involving connection,

ω I J
µ eµKψ̄{γK, σI J}ψ → Ω−4ω I J

µ eµKψ̄{γK, σI J}

+ Ω−4
(

eI
µeνJ − eJ

µeνI
)

∂ν ln Ω eµKψ̄{γK, σI J}ψ

= Ω−4ω I J
µ eµKψ̄{γK, σI J}

+ Ω−4
(

η IKeνJ − η JKeνI
)

∂ν ln Ω ψ̄{γK, σI J}ψ

= Ω−4ω I J
µ eµKψ̄{γK, σI J}

+ 2 Ω−4eνJ∂ν ln Ω ψ̄{γI , σI J}ψ

= Ω−4ω I J
µ eµKψ̄{γK, σI J} . (4.19)
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In the last step above I have used {γI , σI J} = 0 which can be easily verified using

the properties of the γ and σ matrices given in Appendix D. I will also discuss the

invariance of the Dirac equation in tetrad formulation given by Eq. 3.18 i. e.,

γKeµ
K

ψ∂µψ− i
4

ω I J
µ eµK{γK, σI J}ψ = 0 . (4.20)

Under conformal transformation the above equation goes to

Ω−
5
2

(
γKeµ

K
ψ∂µψ− i

4
ω I J

µ eµKγKσI Jψ

)
−Ω−

5
2

(
3
2

γKeµ
Kψ∂µ ln Ω− i

2
eνJ∂ν ln Ω γIσI Jψ

)
= 0

⇒ Ω−
5
2

(
γKeµ

K
ψ∂µψ− i

4
ω I J

µ eµKγKσI Jψ

)
= 0

⇒ γKeµ
K

ψ∂µψ− i
4

ω I J
µ eµKγKσI Jψ = 0 . (4.21)

Here I have used γIσI J = 3iγJ which again can be verified using the properties of the

γ and σ matrices given in Appendix D. The Dirac equation in tetrad formulation is

thus invariant under conformal transformation.

In the tetrad formulation discussed above I have not considered torsion anywhere.

Let us now go to a broader picture where the connection is not presumed to be torsion-

free.

4.2 conformal transformation in vierbein-einstein-palatini formal-

ism

I will investigate conformal transformations in the vierbein-Einstein-Palatini formal-

ism in this section. Since the connection is treated an independent variable except

when it is on-shell, its conformal properties need to be discussed in two different lev-

els: off-shell and on-shell. By on-shell, I mean that the spin connection and torsion

have been replaced by their expressions obtained from the equations of motion. I will

discuss this in Sec. 4.3. At the level of the action however, the equations of motion

cannot be used. Nevertheless, tetrads and co-tetrads are related to the metric and they

transform in the same way as given in Eq. (4.10) and Eq. (4.11).

eI
µ → ΩeI

µ, eµ
I → Ω−1eµ

I . (4.22)
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For the spin connection AI J
µ , I do not know a priori how it transforms. To find its

transformation properties, I will write the transformation of the affine connection Γα
µν

in terms of the transformed tetrads and spin connection,

Γα
µν → Γ̃α

µν = ẽα
I ∂µ ẽI

ν + ÃI
µJ ẽ

J
ν ẽα

I

= δα
ν ∂µ(ln Ω) + eα

I ∂µeI
ν + ÃI

µJe
J
νeα

I . (4.23)

Here the transformed quantities have been denoted with a tilde above them. I can try to

determine the transformation of AI
µJ from this, by positing that the conformally trans-

formed connection ∇̃ is compatible with the transformed metric g̃µν . Using Eq. (4.23),

we see that

∇̃µ g̃αβ = ∂µ g̃αβ − Γ̃ν
µα g̃νβ − Γ̃ν

µβ g̃αν

= ∂µ(Ω2gαβ)− 2Ω2∂µ(ln Ω)gαβ −Ω2(∂µeI(α)e
I
β) −Ω2ÃI J

µ (eJ(αeβ)I)

= 0 . (4.24)

In the last equality I have used the orthonormality of the tetrads and the antisymme-

try of the spin connection ÃI J
µ . Quite clearly, antisymmetry of ÃI J

µ in I J is sufficient to

guarantee metric compatibility. Therefore metric compatibility is not sufficient to de-

termine the transformation of A , and only shows antisymmetry in the internal indices

I , J . I am thus at liberty to choose the transformation of the spin connection as long

as metricity is satisfied. However, the different possible choices are not guaranteed to

reproduce behaviour of usual General Relativity even in the absence of torsion. I will

now discuss a couple of such choices and consider matter fields to demonstrate how

these choices affect their conformal properties.

4.2.1 Nieh-Yan theory

Nieh-Yan theory [23] involves one of the possible choices of conformal transformations

of the spin connection. It should be noted that although the spin connection is an

independent variable, I can always decompose it in terms of the torsion-free ω , which
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is completely determined by the tetrads, and the contorsion tensor Λ as defined in

Eq. (2.35),

AI J
µ = ω I J

µ + ΛI J
µ . (4.25)

At the level of action λI J
µ is independent of the tetrads. In order to find the conformal

transformation of AI J
µ , it should be noted that ω I J

µ is defined completely in terms of the

tetrads regardless of whether it is on-shell or off-shell, and its transformation is given

by Eq. (4.12). The independent quantity in the connection is the contorsion component

ΛI J
µ for which I do not know how it transforms off-shell. In other words, I do not have

any information about torsion and its transformation. But as discussed above, I can

make different choices about the conformal transformation of spin connection as long

as metric compatibility is retained. The choice will dictate what physical results I get

and also specify the transformation of torsion. The simplest choice in this regard was

considered by the authors in [23]. They considered the spin connection to be invariant

under conformal transformation,

AI J
µ → AI J

µ . (4.26)

Invariance of the spin connection implies that unlike in General Relativity, here the

Riemann tensor and the Ricci tensor remain invariant, while the Ricci scalar transforms

homogeneously,

Rρ
σµν = FI

µνJe
ρ
I eJ

σ → FI
µνJe

ρ
I eJ

σ , (4.27)

Rµν = FI
σµJe

σ
I eJ

ν → FI
σµJe

σ
I eJ

ν , (4.28)

R = FI J
µνeµ

I eν
J → Ω−2FI J

µνeµ
I eν

J . (4.29)

This is one of the advantages of Nieh-Yan theory, we have a conformally covariant

theory of gravity. I will investigate further what the invariance of spin connection im-

plies and how it fixes the transformation of the torsion tensor. It should be noted that

in order for the spin connection AI J
µ of Eq. (4.25) to remain invariant, the transforma-

tion of contorsion part Λ must cancel that of the torsion-free part ω given by Eq. (4.12),

i. e.,

ΛI J
µ → ΛI J

µ − (eI
µeν

J − eµJeνI)∂ν ln Ω . (4.30)
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The transformation of torsion tensor, which is given in terms of Λ in Eq. (2.36), is thus

NYCα
µν →NY Cα

µν + δα
ν ∂µ ln Ω− δα

µ∂ν ln Ω . (4.31)

Clearly the Nieh-Yan torsion tensor NYCα
µν transforms inhomogeneously, or in other

words, torsion acts as a gauge field in the conformal transformation group, which is

a fundamental result of Nieh-Yan theory. I will now consider the fermionic field and

the scalar field in this theory.

4.2.1.1 Fermionic field in Nieh-Yan theory

Because I am working with actions, I will consider the fermionic Lagrangian rather

than the Dirac equation. The Lagrangian of the fermionic field given in Eq. (3.21),

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
AI J

µ eµKψ̄{γK, σI J}ψ
)

, (4.32)

transforms homogeneously with conformal weight of −4 if the fermion ψ is taken

to transform in the same way as in Eq. (4.18), provided AI J
µ is invariant as in Nieh-Yan

theory. The Dirac equation can thus be expected to remain conformally covariant too.

But there are certain problems with the equation as we will see now. Let us recall the

Dirac equation in the vierbein-Einstein-Palatini formalism, which is given in Eq. (3.29),

γKeµ
K

ψDµψ = 0 . (4.33)

If the spin connection remains invariant under conformal transformations, this

equation transforms to

Ω−
5
2

(
γKeµ

K
ψDµψ− 1

2
γKeµ

Kψ∂µ ln Ω
)
= 0 . (4.34)

Clearly, the equation is not invariant under these transformations. The source of this

problem lies in the fact that the spinor equation as written here was obtained after

using the total antisymmetry of the on-shell torsion. Let us see how this equation

transforms if I do not use any on-shell property of torsion that is derived from the

equations of motion. In this case I need to consider Eq. (3.23), i. e.,

γKeµ
K∂µψ +

1
2

Cα
µαeµ

KγKψ− i
4

AI J
µ eµKγKσI Jψ = 0 . (4.35)
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Replacing Cα
µα with Nieh-Yan torsion NYCα

µα, the above equation becomes

γKeµ
K∂µψ +

1
2

NYCα
µαeµ

KγKψ− i
4

AI J
µ eµKγKσI Jψ = 0 . (4.36)

The transformation of NYCα
µα can be obtained from Eq. (4.31) by tracing over first and

the last index of the torsion tensor,

NYCα
µα →NY Cα

µα + 3∂µ ln Ω . (4.37)

Taking the above into account, we can see that the Dirac equation remains conformally

covariant. It is thus clear that if on-shell properties of torsion are used, the Dirac

equation does not remain invariant under the assumptions of Nieh-Yan theory. We

will see in Sec. 4.3 that on-shell torsion does not transform in the way given in Eq.4.31

above.

4.2.1.2 Conformal scalar in Nieh-Yan theory

I will start by writing the Lagrangian of the conformal scalar field in terms of vierbein-

Einstein-Palatini variables,

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− 1

12
FI J

µνeµ
I eν

J φ2 . (4.38)

In Nieh-Yan theory the torsion tensor that transforms inhomogeneouly as shown

in Eq. (4.31), bu FI J
µν transforms homogeneously as in Eq. (4.29). This above Lagrangian

is not covariant as a result, with φ→ Ω−1φ .

The Lagrangian can be rewritten with the torsion-free part of FI J
µν in order to make

it conformally covariant,

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− 1

12
FI J

µνeµ
I eν

J φ2 − φ2
(

1
6
∇̂µ

NYCα µ
α +

1
12

NYCµ
µσ

NYCν σ
ν

− 1
48

NYCµνσ NYCµνσ −
1
24

NYCµνσ NYCνµσ

)
.

(4.39)

We can see that the coefficients of φ2 in the above add up to produce the Ricci scalar R̂

corresponding to the torsion-free connection. The Lagrangian can thus be written as

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− 1

12
F̂I J

µνeµ
I eν

J φ2 . (4.40)
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This is the same Lagrangian of conformal scalar of Eq. (4.15) in tetrad formulation and

transforms homogeneously with conformal weight of −4. Evidently the corresponding

equation remains conformally invariant.

It should be noted that I have written the Lagrangian given by Eq. (4.39) with the

full torsion-free Ricci scalar so that in the torsion-free limit, the Lagrangian remains

conformally covariant. But if I am not concerned about the torsion-free limit, the min-

imum modification of the Lagrangian is

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− φ2

(
1
6
∇̂µ

NYCα µ
α +

1
12

NYCµ
µσ

NYCν σ
ν

− 1
48

NYCµνσ NYCµνσ −
1
24

NYCµνσ NYCνµσ

)
. (4.41)

This Lagrangian transforms homogeneously with conformal weight of −4 under con-

formal transformation. I have removed the 1
12 FI J

µνeµ
I eν

J φ2 from the Lagrangian given in

Eq. (4.39) because this term transforms homogeneously and does not affect the confor-

mal covariance of the Lagrangian in Nieh-Yan theory. The corresponding scalar field

equation

∇µ∇µφ− φ

(
1
3
∇̂µ

NYCα µ
α +

1
6

NYCµ
µσ

NYCν σ
ν −

1
24

NYCµνσ NYCµνσ

− 1
12

NYCµνσ NYCνµσ

)
= 0 . (4.42)

is also conformally invariant. Clearly in the torsion-free limit the torsion terms in the

above Lagrangian and equation vanish. Consequently the conformal covariance (or

invariance) gets lost when torsion vanishes. This reinstates my previous statement

that torsion-free limit, not all the results and equations of Nieh-Yan theory reduce to

the corresponding results and equations in General Relativity.

4.2.2 Conformally invariant torsion

Although Nieh-Yan theory gives a conformally covariant theory of gravity, not all its

results can be identified with those in Einstein’s General Relativity in the absence

of torsion. For example the conformal transformations of different quantities do not

reduce to those of General Relativity when torsion vanishes as we have seen in case

of conformal scalar in the previous subsection. I am interested in a formalism which
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resembles Einstein gravity and in which different entities transform in the same way

as in usual General Relativity when torsion is taken to vanish. In such a theory, I

must assume that torsion transforms homogeneously under conformal transformation,

unlike in [23] where torsion acts a gauge potential in conformal group. In other words,

the spin connection AI J
µ should transform in the same way as ω I J

µ does while ΛI J
µ

should remain invariant i.e.,

AI J
µ (≡ ω I J

µ + ΛI J
µ )→ AI J

µ + (eI
µeJα − eJ

µeIα)∂α ln Ω , (4.43)

and

ΛI J
µ → ΛI J

µ . (4.44)

In this case torsion in non-zero but conformal transformation is given by that of

tetrads only. Above transformations immediately imply that torsion tensor given by

the simplified form in Eq. (2.36), remains invariant i. e.,

InvCα
µν → InvCα

µν . (4.45)

It should be noted that if any index of the torsion tensor is raised or lowered, there

will be a conformal weight factor due to the metric involved in the raising or lowering.

The Ricci scalar contains extra terms involving torsion when transformed,

FI J
µνeµ

I eν
J → Ω−2

[
FI J

µνeµ
I eν

J − 6∇̂µ∇̂µ ln Ω− 6
(
∇̂µ ln Ω

) (
∇̂µ ln Ω

)
−4 InvCα µ

α ∂µ ln Ω
]

. (4.46)

It is interesting to note that although torsion itself does not transform, it appears

as a part of the transformation. I will now look at the fermionic and scalar field in the

presence of invariant torsion.

4.2.2.1 Conformal properties of fermionic field with invariant torsion

Let us recall the Lagrangian of the fermionic field,

LF =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
AI J

µ eµKψ̄{γK, σI J}ψ
)

. (4.47)



40 conformal transformation

In order to see how this Lagrangian transforms, it should be noted that with the trans-

formation of the spin connection given by Eq. (4.43), the last term in the above La-

grangian remains unchanged as we have seen in section 4.1.2. The inhomogeneous

transformations of the other two terms cancel each other and as a result, the La-

grangian transforms homogeneously with conformal weight of −4 as before. Let us

now see what the invariant torsion implies for the conformal invariance of the Dirac

equation.

With the spin connection transforming inhomogeneously given by Eq. (4.43), we

can see that the term containing the spin connection in the Dirac equation of Eq. (3.28)

transforms as

AI J
µ eµKγKσI Jψ → Ω−

5
2 (AI J

µ eµKγKσI Jψ + 2ieµKγKψ∂µ ln Ω) . (4.48)

This implies that the Dirac equation remains invariant with ψ → Ω−
3
2 ψ, although the

equation uses the skew symmetry of on-shell torsion. This is a difference with what

was observed in Nieh-Yan theory, where I showed that using the on-shell expression

of torsion breaks the conformal invariance of the Dirac equation.

4.2.2.2 Conformal scalar with invariant torsion

Let us now look at the conformal scalar with invariant torsion. As in Nieh-Yan theory

I will start by writing the Lagrangian of the conformal scalar in terms of the vierbein-

Einstein-Palatini variables,

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− 1

12
FI J

µνeµ
I eν

J φ2 . (4.49)

Using the transformation of the Ricci scalar given by Eq. (4.46), we see that the above

Lagrangian transforms as

Lφ → Ω−4Lφ +
1
3

Ω−4φ2 InvCα µ
α ∂µ ln Ω . (4.50)

The minimal modification that makes the Lagrangian conformally covariant is the

addition of a torsion term,

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− 1

12
FI J

µνeµ
I eν

J φ2 − 1
6

φ2∇̂µ
InvCα µ

α . (4.51)
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This Lagrangian transforms homogeneously because the added term has the following

transformation.

1
6

φ2∇̂µ
InvCα µ

α → Ω−4
(

1
6

φ2∇̂µ
InvCα µ

α +
1
3

φ2 InvCα µ
α ∂µ ln Ω

)
. (4.52)

The above might seem to suggest that torsion transforms inhomogeneously al-

though I am considering invariant torsion. It should be noted that Cα
µν is conformally

invariant. Raising or lowering of indices involves the metric and thus results in a con-

formal weight e. g.,

Cα β
µ ≡ gβνCα

µν → Ω−2Cα β
µ . (4.53)

Taking a derivative with respect to ∇̂ thus results in an inhomogeneous transformation.

Also the transformation of Γ̂α
µν adds to the inhomogeneous part. The scalar equation

corresponding to the Lagrangian given in Eq. (4.51)

∇̂µ∇̂µφ− 1
6

FI J
µνeµ

I eν
J φ− 1

3
φ∇̂µ

InvCα µ
α = 0 . (4.54)

is invariant under conformal transformation. In the torsion-free limit, the above equa-

tion and Lagrangian given in Eq. (4.51) reduce to their counterparts in the tetrad for-

mulation of General Relativity. Thus unlike in case of Nieh-Yan theory, here the the

torsion-free limit reduces to General Relativity.

It should be further noted that I can also write the torsion-free part of the Ricci

scalar with quadratic torsion terms, as I did in the case of Nieh-Yan theory, without

affecting the covariance of the Lagrangian or invariance the equation. This is because

the quadratic torsion terms transform homogeneously with conformal weight of −2.

I can thus say that the general Lagrangian for the conformally invariant scalar field

is

Lφ = −1
2

eµ
I eνI∂µφ∂νφ− 1

12
FI J

µνeµ
I eν

J φ2

− φ2
(

1
6
∇̂µ

InvCα µ
α +

1
12

InvCµ
µσ

InvCν σ
ν

− 1
48

InvCµνσ InvCµνσ −
1
24

InvCµνσ InvCνµσ

)
. (4.55)

Similar to what was obtained in Nieh-Yan theory, the coefficients of φ2 can be identi-

fied as − 1
12 R̂ . This implies that although I am dealing with non-zero off-shell torsion,
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for the conformally invariant scalar field the Lagrangian can always be written with

torsion-free Ricci scalar.

4.3 dynamically generated torsion and conformal transformation

In this section I will deal with dynamically generated (on-shell) torsion and see its ef-

fects on conformal properties of matter fields. Torsion is sourced from other dynamical

fields and it comes from the equations of the spin connection. So nothing is assumed a

priori about the transformation of torsion. We have seen in chapter 3 that spinor fields

can produce torsion. I will demonstrate how non-minimal scalar fields can also pro-

duce torsion on-shell. But there are problems with the conformal weight of the torsion

terms if they are dynamically generated. We will see that on-shell torsion transforms

homogeneously but unlike invariant torsion, its transforms with an overall weight. I

will demonstrate these problems and possible solutions with specific fields.

4.3.1 Dynamically generated torsion and conformal scalar

The total action including the conformal scalar, in terms of vierbein-Einstein-Palatini

variables is given by

S[e, A, φ] = SVEP[e, A] +
∫
|e|d4x

[
−1

2
eµ

I eνI∂µφ∂νφ− 1
12

FI J
µνeµ

I eν
J φ2
]

. (4.56)

Extremising the action with respect to the independent variables produces three sets

of equations,

δeν
J : FI J

αµeα
I eνJ −

1
2

gµνFI J
αβeα

I eβ
J = κ

(
∂µφ∂νφ− 1

2
gµνgαβ∂αφ∂βφ

+
1
6

(
FI J

αµeα
I eνJ −

1
2

gµνFI J
αβeα

I eβ
J

))
, (4.57a)

δAI J
ν : AI J

µ = ω I J
µ [e] +

1
2

(
eI

µeJα − eJ
µeIα

)
∂µ ln

(
1− κφ2

6

)
, (4.57b)

δφ : ∇̂µ∇̂µφ− 1
6

FI J
µνeµ

I eν
J φ = 0 . (4.57c)



4.3 dynamically generated torsion and conformal transformation 43

Here I have contracted the equations with tetrads in order to convert them to familiar

forms. It should be noted that in Eq. (4.57c), the first term has been written in terms

of the torsion-free derivative since

∇̂µ∇̂µφ−∇µ∇µφ = Sαµ
α∂µφ = 0 , (4.58)

which follows from the definition of contorsion tensor given in Eq. (1.17). The right

hand side of Eq. (4.57a) does not contain the full energy-momentum tensor as can be

seen on comparison with Eq. (4.8). As a result it will not be a conserved tensor. This

is because in this case the Einstein tensor Gµν , which appears on the left hand side

of the equation, is torsionful. I can separate the torsion-free and torsionful parts by

considering the on-shell expression of the spin connection (4.57b). Before getting into

this, let us first see how Eq. (4.57b) can lead to non-zero torsion. The spin connection

up to O(κ) can be written as

AI J
µ ≈ ω I J

µ [e]− κ

12

(
eI

µeJα − eJ
µeIα

)
∂µφ2 . (4.59)

Comparing with Eq. (2.35), the second term in this equation can be identified as con-

torsion Λ,

ΛI J
µ = − κ

12

(
eI

µeJα − eJ
µeIα

)
∂µφ2 . (4.60)

This gives the following expression for the on-shell torsion tensor

OSCα
µν =

κ

12

(
δα

µ∂νφ2 − δα
ν ∂µφ2

)
. (4.61)

It should be noted here that the expressions of on-shell torsion found Eq. (4.61)

have been found in other contexts like conformal Standard Model [56]. I have obtained

the expression for on-shell torsion from the equation of the spin connection whereas

in [56], the conformal transformation of the torsion tensor was postulated in a form

which seems to come from the expression given in Eq. (4.61). Inserting Eq. (4.59) in

Eq. (4.57a) gives

F̂I J
αµeα

I eνJ −
1
2

gµν F̂I J
αβeα

I eβ
J = κ

(
∂µφ∂νφ− 1

2
gµνgαβ∂αφ∂βφ +

1
6
(F̂I J

αµeα
I eνJ

−1
2

gµν F̂I J
αβeα

I eβ
J )φ

2 +
1
6

[
gµν∇̂σ∇̂σφ2 − ∇̂µ∇̂νφ2

])
+O(κ2) . (4.62)
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I have thus obtained the correct energy-momentum tensor, with O(κ2) contribu-

tions which can be neglected. There is however another problem with Eq. (4.57c). I can

insert Eq. (4.59) in Eq. (4.57c) to write it up to O(κ) as

∇̂µ∇̂µφ− 1
6

F̂I J
αβeα

I eβ
J φ +

κ

24
φ∇̂α∇̂αφ2 = 0 . (4.63)

Upon a conformal transformation this equation becomes

Ω−3
(
∇̂µ∇̂µφ− 1

6
R̂φ

)
+

κ

24
Ω−5φ∇̂α∇̂αφ2 − κ

6
Ω−5φ2gαβ∂αφ∂βφ

− κ

12
Ω−5φ3∇̂α∇̂α ln Ω = 0 . (4.64)

Clearly the equation is not conformally invariant. The last term in Eq. (4.63) not only

has different conformal weight, it also transforms inhomogeneously. The source of this

discrepancy lies in the expression of spin connection, more precisely the contorsion Λ ,

which transforms as

ΛI J
µ → Ω−2ΛI J

µ +
κ

6
Ω−2

(
eI

µeJα − eJ
µeIα

)
φ2∂α ln Ω . (4.65)

The conformal weight of ΛI J
µ is different from that of the torsion-free part ω I J

µ of

Eq. (4.12) and also it transforms inhomogeneously. I can resolve this problem by mod-

ifying the action such that it does not produce torsion dynamically. The connection

used in the vierbein-Einstein-Palatini formalism is not torsion-free a priori. However,

the Rφ2 term in the metric formalism, is constructed from a torsion-free connection.

Therefore, in the vierbein-Einstein-Palatini formalism if I construct the non-minimal

Rφ2 term only from the torsionless part of the connection I can eliminate on-shell

torsion. The total action now reads

S[e, A, φ] =
1

2κ

∫
|e|d4xFI J

µνeµ
I eν

J +
∫
|e|d4x

(
−1

2
eµ

I eνI∂µφ∂νφ− 1
12

F̂[ω]I J
µνeµ

I eν
J φ2
)

.

(4.66)
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The equations of motion as obtained from this action are

δeν
J : Rµν −

1
2

gµνR = κ

(
∂µφ∂νφ− 1

2
gµνgαβ∂αφ∂βφ +

1
6
(R̂µν −

1
2

gµνR̂)φ2

+
1
6

[
gµν∇̂σ∇̂σφ2 − ∇̂µ∇̂νφ2

])
, (4.67a)

δAI J
ν : AI J

µ = ω I J
µ [e], (4.67b)

δφ : ∇̂µ∇̂µφ− 1
6

R̂φ = 0 . (4.67c)

The scalar field equation (4.67c), thus gets back the torsion-free, conformally invari-

ant form given by Eq. (4.5). The action in Eq. (4.66) leads to vanishing on-shell torsion

and the equations can be identified with those in the usual metric formalism. Also

upon using the on-shell expression of the spin connection given by Eq. (4.67b), the left

hand side of Einstein’s equation (4.67a) becomes torsion-free and the equation can be

identified with that in the tetrad formalism given in Eq. (4.16). I have also discussed

an alternative but equivalent method of obtaining conformally invariant scalar field

equation in Appendix B.

4.3.2 Dynamically generated torsion and fermion

I will now consider the conformal transformation of fermionic field equation when

the on-shell torsion arises from the field itself. The expression for the on-shell torsion

with fermionic field was found in Eq. (3.27), and using this expression, I obtained a

nonlinear Dirac equation

γKeµ
K∂µψ− i

4
ω I J

µ eµKγKσI Jψ−
iκ
64

ψ̄{γK, σI J}ψ{γK, σI J}ψ = 0 . (4.68)

Comparing with the Dirac equation in the tetrad formulation, I recognize that the first

two terms are covariant under conformal transformations. The cubic term however

transforms with a different weight, as can be seen from the transformed equation,

Ω−
5
2

(
γKeµ

K∂µψ− i
4

ω I J
µ eµKγKσI Jψ

)
− iκ

64
Ω−

9
2 ψ̄{γK, σI J}ψ{γK, σI J}ψ = 0 . (4.69)

The nonlinear Dirac equation is thus not invariant under conformal transformation.

The source of this difference in conformal weight is as follows.
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The cubic term which breaks the invariance of the equation appeared due to the

dynamically generated contorsion Λ . I will consider the transformation of the spin

connection of Eq. (3.22b) to see this.

AI J
µ → ω I J

µ [e] +
(

eI
µeJν − eJ

µeIν
)

∂ν ln Ω + Ω−2ΛI J
µ . (4.70)

The two components of the spin connection ω and Λ(= κ
8 ψ̄{γK, σI J}ψeK

µ ) transform

with different conformal weights. This is because they come from two different sectors

of the theory. While ω comes from the gravity sector and is fully determined by the

geometry, Λ comes from the matter sector, in this case fermions. But these two sectors

have different conformal weights. The fermion Lagrangian transforms homogeneously

with weight −4 but R in the gravity part has weight of −2. This difference shows up

in the transformation of Λ. The transformation of the spin connection also implies that

torsion as given by Eq. (3.27) transforms homogeneously with conformal weight −2 ,

OSCν
ρλ → Ω−2 OSCν

ρλ . (4.71)

It is thus clear that on-shell torsion tensor (with index positions as above) trans-

forms homogeneously unlike in Nieh-Yan theory where it has an inhomogeneous

transformation. Also the above transformation is different from that of the invariant

torsion of Eq. (4.45) because it transforms with a factor of Ω−2 .

I can thus conclude that similar to what has been observed in the case of scalar

field, dynamically generated torsion also breaks the conformal invariance of Dirac

equation. I can try to make the Dirac equation conformally invariant but this requires

the fundamental theories to be modified as I will discuss below.

There are different ways to proceed in order to reinstate conformal invariance. First,

if I have an action for gravity that scales in the same manner as the matter action, I

can eliminate the above mentioned weight difference of ω and Λ altogether. A scale

invariant theory of gravity with spinors, as discussed in [57] where the authors con-

sidered Brans-Dicke (BD) theory of gravity, might be able to provide a way out. If it is

possible to construct such a theory of gravity without affecting the on-shell quantities

obtained, I will get back the conformally covariant Dirac equation. Another way was

discussed in [58] where an invariant theory of Dirac field was considered in conformal

gravity such that the nonlinearities in the Dirac equation do not appear.
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A third way of making the Dirac equation conformally invariant is to modify the

fermionic Lagrangian. If I am interested in the conformal invariance of the Dirac equa-

tion alone, the spinor Lagrangian can be modified by the addition of a quartic term.

The term should be chosen in such a way that it cancels the cubic term thereby making

the equation linear. It should also be kept in mind that this term should not affect the

expression for on-shell torsion i. e., the spin connection should not appear in it. I will

modify the spinor Lagrangian as

LF−mod =
i
2

(
ψ̄γKeµ

K∂µψ− ∂µψ̄γKeµ
Kψ− i

4
AI J

µ eµKψ̄{γK, σI J}ψ

+
iκ
64

ψ̄{γK, σI J}ψψ̄{γK, σI J}ψ
)

. (4.72)

The equation obtained by extremising the corresponding action with respect to ψ̄ is

γKeµ
K∂µψ− i

4
AI J

µ eµKγKσI Jψ +
iκ
64

ψ̄{γK, σI J}ψ{γK, σI J}ψ = 0 . (4.73)

Also, extremisation with the spin connection produces exactly the same expressions

for the contorsion Λ and torsion C as found in Eq. (3.24) and Eq. (3.27) earlier. So

when putting the on-shell expression of the spin connection in the above equation

gives nothing but the linear Dirac equation which was obtained in tetrad formulation

i. e.,

γKeµ
K∂µψ− i

4
ω I J

µ eµKγKσI Jψ = 0 . (4.74)

I have thus eliminated the cubic term and obtained the conformally invariant Dirac

equation. The added term however, also cancels the O(κ2) on the right hand side of

Einstein’s equations (3.31). In other words, with the addition of the term I am effec-

tively dealing with a torsion-free theory.

Also, unlike in Nieh-Yan theory (and invariant torsion), the Lagrangian above is not

conformally invariant although the equation it produces is invariant under conformal

transformation.
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4.4 general off-shell transformation

I have discussed two possibilities of the transformation of the spin connection AI J
µ in

the level of action. The two cases can be parametrised with a single parameter. In order

to do that, I will write torsion-free part of the connection as

ω I J
µ = AI J

µ −ΛI J
µ . (4.75)

The transformation of ω is dictated from that of the tetrads and this implies that the

right hand side of the equation has a definite conformal transformation. If I consider

the case where AI J
µ remains invariant, ΛI J

µ must transform like ω I J
µ with a negative sign

(Nieh-Yan). On the other hand, if it is ΛI J
µ that remains invariant, AI J

µ must transform

like ω I J
µ (invariant torsion). The transformations

AI J
µ → AI J

µ + ξ
(

eI
µeJν − eJ

µeIν
)

∂ν ln Ω , (4.76)

ΛI J
µ → ΛI J

µ − (1− ξ)
(

eI
µeJν − eJ

µeIν
)

∂ν ln Ω , (4.77)

interpolate between the two cases with ξ = 0 and ξ = 1 , with Nieh-Yan theory cor-

responding to ξ = 0 and invariant torsion corresponding to ξ = 1. Other values of

ξ also correspond to conformal transformations, with the Dirac Eq. (3.23) remaining

invariant for any value of ξ between 0 and 1. This parametrization may be compared

with that postulated for the transformation of torsion in conformal gravity [59], where

it is an undetermined constant. For the scalar field however, the non-minimal coupling

term − 1
12 Rφ2 must be written using the torsion-free Ricci scalar in order for the field

equation to be conformally invariant, as was observed for both Nieh-Yan theory and

invariant torsion.

I will conclude this chapter with a few remarks. We have seen that dynamically

generated torsion does not transform inhomogeneously at all. There is of course an

issue with torsion if considered to be given by the equations of motion alone: the

contorsion part has a relative weight over the torsion-free part.

For minimally coupled fermionic fields, the on-shell torsion resulting from the

fermion coupling makes the Dirac equation nonlinear. This equation is not conformally

invariant. We have seen that there are different ways of restoring conformal invariance

of the Dirac equation, one of which involves the addition of a quartic term in the

Lagrangian. This term helps to recover the conformally invariant linear Dirac equation
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by setting the torsion to vanish on shell, but the cost is the additional quartic term. It

should be noted that it is also possible to consider the torsion, or alternatively fermion,

as a source of explicit breaking of conformal symmetry, as was done in [60].





5
N E U T R I N O M I X I N G

We have seen in chapter 3 that torsion induces an effective self-interaction among

fermions thereby making the Dirac equation nonlinear, analogous to the Nambu-Jona-

Lasinio model [61, 62]. This feature has been exploited in particle physics, for example

in [63] it has been suggested that torsion induces interactions among leptons identi-

cal to the weak leptonic interactions in Weinberg’s standard model [64]. The quartic

interaction induced by minimal coupling of fermions with torsion has been shown to

help replace the big bang singularity with a cusp-like bounce [65]. In cosmological

models [66–68] the possibility of a self accelerating universe has been discussed with

the help of torsion. Also it has been suggested that the four-fermion interaction orig-

inating from spin-torsion coupling can be seen as dark energy [69]. The possibility of

inflationary phase in the early universe has been discussed using only spin and torsion

without the need of any extra fields [70]. In this chapter1 I will use the four fermion

interaction to explain the source of neutrino mass and oscillation.

Neutrinos were originally thought to be massless charge neutral particles. However

in order to explain the flavour oscillations of neutrinos, it is necessary to assume that

neutrinos have mass eigenstates different from their flavour eigenstates [71]. But the

origin of neutrino mass is a mystery [72, 73]. The Standard Model of particle physics

is successful because it encompasses all the known elementary particles and the inter-

actions between them, explains the masses of elementary particles. Particles get mass

in terms of electroweak symmetry breaking and the vacuum expectation value of the

Higgs field. The Higgs field in the electroweak theory is a complex doublet whose po-

tential reaches a local minimum for a continuous range of configurations of the field,

corresponding to a non-vanishing vacuum expectation value (vev) of the neutral scalar

Higgs field. This is the phenomenon of spontaneous symmetry breaking, which means

1 The work reported here is based on the paper "Geometrical contribution to neutrino mass matrix", Sub-
hasish Chakrabarty and Amitabha Lahiri, Eur. Phys. J. C 79, 8, 697 (2019).
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that the vacuum is not invariant under the symmetry transformations of the classical

Lagrangian and the quantum Higgs field consists of fluctuations around this vev.

In the Standard Model, it is the SU(2) × U(1) electroweak symmetry which is

spontaneously broken in the vacuum. For the fermions, this symmetry is a chiral one.

Let us focus on the leptons, but what I say can be generalized to quarks quite easily.

Left-handed components of leptons pair up into doublets of weak isospin ΨeL =

νL

eL


while a right-handed component has never been observed for the neutrino and thus

the right-handed electron eR is by necessity a singlet. The Higgs doublet field Φ =φ+

φ0

 couples left-handed doublets to the right-handed singlet via the Yukawa-type

interaction

−he

(
Ψ̄eLΦeR + ēRΦ†ΨeL

)
. (5.1)

For quantisation, φ0 is expanded around its vev v as φ0 = 1√
2
(v + H + iζ) with H , ζ

being quantum fields. Then the Yukawa terms can be written as

−he

[
v√
2
(ēLeR + ēReL) + ν̄eLeRφ+ + ēRνeLφ− +

1√
2
(ēeH + i ēγ5eζ)

]
. (5.2)

The first term, which provides the mass of electrons, thus owes its existence to sponta-

neous symmetry breaking. Since the Standard Model does not include a right handed

component for the neutrino, a mass term for the neutrino is not generated by the

Standard Model interactions.

But this is not completely true, as was first noted by Wolfenstein [74]. Interactions

with a medium results in effective masses for the neutrinos belonging to different lep-

ton families, leading to mixing and oscillations between the different neutrinos, an

effect that has been used to explain the solar neutrino problem, as well as the shortfall

of electron-antineutrinos coming from reactors. Neutrino oscillations occur because

the mass eigenstates of the neutrinos are not identical with their flavour eigenstates.

But the neutrino masses must be non-vanishing as well as close to one another for

this argument to explain neutrino oscillations in vacuum. In material media the effec-

tive mass of the neutrino is significantly modified because of interactions. The change

is different for the electron neutrino νe , which has both charged-current and neutral-

current interactions with the electrons in the medium, compared to νµ and ντ which
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have only the second kind of interaction. This can enhance neutrino oscillations signif-

icantly, depending on the distance travelled in matter by the neutrinos.

Let us first see what happens to neutrinos propagating in vacuum [71, 75, 76]. If the

neutrinos are all massless and thus degenerate eigenstates of the Hamiltonian, there

will be no oscillation. Suppose however that the neutrinos have mass, different masses

for different species, and further that the mass eigenstates are not identical with the

flavour eigenstates. This assumption represents departure from the Standard Model.

It is justified a posteriori by the observation of neutrino oscillations [77–81]. The price

of this assumption is the introduction of additional dynamical degrees of freedom,

at scales beyond current limits of experimental observation, to protect electroweak

gauge symmetry. Then there will be mixing among neutrino eigenstates, which can

be parametrized by a unitary matrix. The neutrino field νl which appears in a doublet

with a lepton l is related to the field να whose excitations are mass eigenstates by this

matrix U as [82]

|νlL〉 = ∑
α

Ulα|ναL〉 . (5.3)

At time t , the flavour eigenstates are related to the mass eigenstates by

|νlL〉 = ∑
α

e−iEαtUlα|ναL〉 . (5.4)

It can be usually assumed quite safely that in any process different neutrinos are pro-

duced with spatial momenta of the same magnitude, so that if neutrinos are massless

or if all neutrinos have the same mass, all the Eα are the same and there is no os-

cillation among the neutrino flavour states. I will then suppose that neutrinos have

different masses, mα 6= 0 and all different. Then the probability of finding a νl′ at time

t in a beam that had started out as νl is given by

Pνl′νl (t) = |〈νl′ |νl(t)〉|2

= ∑
α ,β

∣∣∣U∗l′αUlαU∗lβUl′β

∣∣∣ cos
(
(Eα − Eβ)t− φll′αβ

)
, (5.5)
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where φll′αβ = arg
(

U∗l′αUlαU∗lβUl′β

)
. The neutrinos are ultrarelativistic and start with

the same spatial momenta, so I can write their energies as Eα ' E + m2
α

2E . I can also

replace the time of travel t by the distance of travel x and write

Pνl′νl (t) = ∑
α ,β

∣∣∣U∗l′αUlαU∗lβUl′β

∣∣∣ cos

(
(m2

α −m2
β)x

2E
− φll′αβ

)
. (5.6)

Clearly there will be no mixing and no oscillation if the neutrinos have vanishing mass

in the vacuum. Interactions with a medium results in different effective masses for the

neutrinos belonging to different lepton families, as first noted by Wolfenstein [74], but

a neutrino mass is still needed. On a curved spacetime however, geometry provides

an additional interaction with other fermions, thus a contribution to the Hamiltonian,

challenging this conclusion.

Let us recall the nonlinear Dirac equation of Eq. (3.30)

γKeµ
K∂µψ− i

4
ω I J

µ eµKγKσI Jψ + mψ− iκ
64

ψ̄{γK, σI J}ψ{γK, σI J}ψ = 0 . (5.7)

This equation was obtained from the total action of Eq. (3.19). The last term in the Dirac

equation in particular, resulted from the on-shell expression of the spin connection

given by Eq. (3.22b) i. e.,

AI J
µ ≡ ω I J

µ [e] + ΛI J
µ = ω I J

µ [e] +
κ

8
ψ̄{γK, σI J}ψeK

µ . (5.8)

Using the properties of γ and σ matrices (Appendix F), the Dirac equation can be

written as

γKeµ
K∂µψ− i

4
ω I J

µ eµKγKσI Jψ + mψ +
3iκ
8

(
ψ̄γIγ5ψ

)
γIγ

5ψ = 0 . (5.9)

Also Einstein’s equation is given by

Rµν −
1
2

gµνR = κTµν , (5.10)

where the stress-energy tensor Tµν is now quartic in the fermionic field,

Tµν(ψ, ψ̄) =
i
4

(
∂µψ̄γIψeI

ν − ψ̄γI∂µψeI
ν +

i
4 ω I J

µ eK
ν ψ̄{γK, σI J}+ ψ + (µ↔ ν)

)
+imgµνψ̄ψ− 3κ

16 gµν

(
ψ̄γIγ5ψ

)2 . (5.11)



neutrino mixing 55

It should be noted that the above equations are for one species of fermion only. One

important point often gets overlooked or at least is not explicitly mentioned, which is

the fact that every fermion field must be included in the matter action and therefore

all fermions will be present in the expression for spin connection,

AI J
µ = ω I J

µ +
κ

8
eK

µ ∑
f

ψ̄ f {γK, σI J}ψ f , (5.12)

where the sum is over all species of fermions present in the universe. This term will

also appear in the nonlinear Dirac equation for each type of fermion,

γKeµ
K∂µψi −

i
4

ω I J
µ eµKγKσI Jψi + mψi +

3iκ
8

(
∑

f
ψ̄ f γIγ5ψ f

)
γIγ

5ψi = 0 . (5.13)

We have seen in Eq. (5.8) that the spin connection comes out in the form AI J
µ =

ω I J
µ + ΛI J

µ on-shell. Let us see what happens if I decompose the spin connection in this

form on-shell with Λ being independent of the tetrads as long as equations of motion

are not used. With this decomposition I can write FI J
µν(A) as

FI J
µν(A) = F̂I J

µν(ω) + ∂[µΛI J
ν]
+
[
ω[µ, Λν]

]
+ ηKLΛIK

[µ ΛLJ
ν]

. (5.14)

Extremising the action

S =
∫
|e|d4x

[
1

2κ

(
F̂I J

µν(ω) + ∂[µΛI J
ν]
+
[
ω[µ, Λν]

]
+ ηKLΛIK

[µ ΛLJ
ν]

)
eµ

I eν
J

+ i
2 ∑ f

(
ψ̄ f γKeµ

K D̂ f
µψ f − (ψ̄ f γKeµ

K D̂ f
µψ f )

† + 2m f ψ̄ f ψ f

)
+ 1

2κ ηKLΛIK
[µ ΛLJ

ν]
eµ

I eν
J +

1
8 ∑ f eµ

KΛI J
µ ψ̄ f {γK, σI J}ψ f

]
.

(5.15)

with respect to Λ I find that the only nonvanishing variations come from the fermionic

part of the action and the last term of FI J
µν(A), so that the equation of motion for Λ is

ΛI J
µ =

κ

8
eK

µ ∑
f

ψ̄ f {γK, σI J}ψ f . (5.16)

I can insert this solution for Λ into the Einstein’s equations and the Dirac equation,

which are then exactly the same as the equations found above. Furthermore, if I sub-

stitute this expression in the action, the resulting Einstein’s equations and the Dirac

equation are also exactly the same as found above. In general, inserting a solution into
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the action gives incorrect results. In this case however, the antisymmetrized covariant

derivative of Λ contribute to a total derivative in the action, so Λ is an auxiliary field

(see Appendix (C)).

The total action of gravity with fermions is thus

S =
∫
|e|d4x

[
1

2κ F̂I J
µν(ω)eµ

I eν
J +

i
2 ∑ f

(
ψ̄ f γKeµ

K D̂ f
µψ f − (ψ̄ f γKeµ

K D̂ f
µψ f )

† + 2m f ψ̄ f ψ f

)
+ 1

2κ ηKLΛIK
[µ ΛLJ

ν]
eµ

I eν
J +

1
8 ∑ f eµ

KΛI J
µ ψ̄ f {γK, σI J}ψ f

]
.

(5.17)

What I have is nothing more than general relativity with fermions. The contor-

sion Λ is an auxiliary field which enforces the interaction of spacetime geometry with

fermionic fields but does not propagate. In the absence of fermions Λ vanishes, irre-

spective of any bosonic fields present as long as they are minimally coupled to gravity.

Again this is all very well known, but writing the action in this form draws attention

to another aspect which seems to have been overlooked.

The invariance of this action under local Lorentz transformations means that Λ

transforms homogeneously under them. In particular, the last term of the above action

is invariant on its own. Since Λ does not transform inhomogeneously, the coupling of

Λ to fermions is not like the coupling of a gauge field to fermions. The transformation

of fermions does not affect that of Λ, so their coupling is not protected by any invari-

ance. This way it is more analogous to the coupling of a real scalar field to fermions –

the coefficient of ψ̄φψ can be freely set by hand. But unlike a scalar field, Λ can couple

chirally to fermions – it couples to the left-handed neutrinos irrespective of whether

or not there are right-handed neutrinos in the universe. So there is no reason why

different species of fermions cannot be coupled to Λ with different coupling strengths,

analogous to the Yukawa coupling of fermions to a scalar field.

Therefore the generic form of the action of fermions coupled to gravity must be,

not (5.17), but

S =
∫
|e|d4x

[
1

2κ F̂I J
µν(ω)eµ

I eν
J +

i
2 ∑ f

(
ψ̄ f γKeµ

K D̂ f
µψ f − (ψ̄ f γKeµ

K D̂ f
µψ f )

† + 2m f ψ̄ f ψ f

)
+ 1

2κ ηKLΛIK
[µ ΛLJ

ν]
eµ

I eν
J +

1
8 ∑ f ΛI J

µ eµ
K
(
λ f Lψ̄ f L{γK, σI J}ψ f L

+λ f Rψ̄ f R{γK, σI J}ψ f R
)]

,

(5.18)
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where I have taken into account the possibility that the tensor currents due to left and

right-handed fermions, which transform independently under local Lorentz transfor-

mations, may couple to Λ with different coupling constants λ f L and λ f R , respectively.

Even though in this form the action appears to be a philosophical departure from how

fermions have always been treated in general relativity, it is in fact a generic form

which must inevitably appear when fermions are put in curved spacetime, unless the

coupling constants λ f are set to zero by fiat. Furthermore, since Λ leads to a torsion

Cα
µν ≡ ΛI J

[µ
eν]Je

α
I =

κ

2
εI JKLeα

I eµJeνK ∑
f

λ f ψ̄ f γLγ5ψ f , (5.19)

which is totally antisymmetric and thus does not affect geodesics, all particles fall at

the same rate in a gravitational field and the principle of equivalence is not violated

by these coupling constants. I have also checked that inclusion of coupling constants

does not affect the current conservation of different fermions (Appendix E).

Solving for Λ and inserting the solution back into the action as before, produces

the effective action

S =
∫
|e|d4x

[
1

2κ F̂I J
µν(ω)eµ

I eν
J +

i
2 ∑ f

(
ψ̄ f γKeµ

K D̂ f
µψ f − (ψ̄ f γKeµ

K D̂ f
µψ f )

† + 2m f ψ̄ f ψ f

)
− 3κ

16

(
∑ f
(
λ f Lψ̄ f LγIγ

5ψ f L + λ f Rψ̄ f RγIγ
5ψ f R

))2
]

.

(5.20)

I will use this action of fermions in curved spacetime as the starting point of further

calculations below. It is in fact not meaningful to work with a Dirac equation contain-

ing Λ , because Λ must always equal its on-shell value. Furthermore, the quartic term

is independent of the background metric, but must be included as long as there is

gravity in the universe. The only ways this term can be absent from the action are if

gravity is turned off (κ → 0), or if the quartic couplings λ f are assumed to be zero.

This term is suppressed by two powers of Planck mass compared to the mass term,

but it could still help avert gravitational singularities [19, 65, 83, 84]. We will see that it

can also in principle allow neutrino oscillations even when the neutrinos are massless.
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5.1 neutrino oscillations

In considering the propagation of neutrinos through normal matter, i. e. solar or stellar

cores or nuclear reactors, I need to take into account only the effects due to electrons

and nucleons (or three colors each of up and down quarks) in addition to the quartic

self-interaction of the neutrinos. Weak interactions will be present of course, I will

come back to the effect of that. I will also restrict to only two types of neutrinos as

before. The quartic term relevant to my purpose is

L(ψ̄ψ)2 = −3κ

16

[
∑
α ,β

λνα λνβ
(ν̄αγIνα)(ν̄βγIνβ)

−2 ∑
α, f

λνα(ν̄αγIνα)
(
−λ f V ψ̄ f γIψ f + λ f Aψ̄ f γIγ5ψ f

)]
+ · · · ,

(5.21)

where I have used the fact the neutrinos are left-handed, written λV = 1
2 (λL−λR) , λA =

1
2 (λL + λR) for the other fermions, and indicated by dots the terms which do not in-

volve neutrinos. It is easy to see that the να which appear in the above expression,

i. e. those which couple to Λ in (5.18), must be the mass eigenstates.

Following Wolfenstein [74] I calculate the forward scattering amplitude of the α-

type neutrinos,

M = −3κ

8
(ν̄αγIνα) λνα

〈
∑
β

λνβ
ν̄βγIνβ + ∑

f=e,p,n

(
λ f V ψ̄ f γIψ f − λ f Aψ̄ f γIγ5ψ f

)〉
,

(5.22)

where the average is taken over the background. In the second sum, the spatial compo-

nents of the axial current average to spin in the nonrelativistic limit, which for normal

matter is negligible. The axial charge is also negligible. Similarly, the spatial compo-

nents of the vector current average to the spatial momentum of the background, which

can also be neglected. Since neutrinos are ultrarelativistic, their density inside a finite

volume such as a star is bounded by the rate of production times the average density

of the region, i. e., several orders of magnitudes smaller than the density of electrons

or baryons. Thus the average of the neutrino term can also be neglected.
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So what I am left with is the average of the temporal component of the vector

current of fermions, which is nothing but the number density of the fermions,

〈ψ̄γ0ψ〉 = −〈ψ†
f ψ f 〉 = −n f . (5.23)

It should be noted that the “density" of the fermion field is the time component

of Jµ ≡ eµ
I ψ̄γIψ . If the spacetime allows a 3+1 decomposition of the background

metric as gµν = (−λ2 + hij) , the volume measures can be related as
√−g = λ

√
h

and e0
I = λ−1δ0

I , where δ
µ
I is the Kronecker delta. In this case J0 = −λ−1ψ†ψ which

is integrated over three spatial dimensions against the volume measure λ
√

h . I have

assumed this decomposition.

The contribution of the forward scattering amplitude to the effective Hamiltonian

density is therefore

δHeff =

(
∑

f=e,p,n
λ f n f

)
∑
α

λνα ν†
ανα, (5.24)

where I have now dropped the subscript V and absorbed a factor of
√

3κ
8 in the

definition of each of the λ .

This term acts as an effective mass term for the neutrinos, with mα = λνα ρ , where

ρ = ∑ λ f n f is a weighted density of fermions (excluding neutrinos) that is the same

for all neutrinos. This effective mass term modifies the mass of the neutrino and thus

the oscillation formula, but even more interestingly, this term will cause neutrino os-

cillations even if neutrinos are massless. In that case, with two species of neutrinos

I should replace |m2
2 − m2

1| by ρ2|λ2
ν2
− λ2

ν1
| for constant density. The mixing matrix

takes the form U =

 cos θ sin θ

− sin θ cos θ

 , so the probability of conversion of one par-

ticular flavour of neutrino into the other in a regions with constant density becomes

Pconv = sin2 2θ sin2
(

ρ2∆λ2

4E
x
)

, (5.25)

where ∆λ2 = |λ2
ν2
− λ2

ν1
| .

This result is qualitatively different from the usual formula for neutrino oscilla-

tions in vacuum. If I do not write a mass term for the neutrino, all contributions to

neutrino mass comes from the quartic interaction of the neutrino with fermions in the
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background as well as with itself. The actual background geometry of the spacetime

does not contribute to the effective mass, at least for small curvatures, for which the

leading order result of the forward scattering amplitude is sufficient. Thus a neutrino

propagating through vacuum would not oscillate into different flavours, but oscilla-

tion would occur only in the region where there is a fermion density and stop when

the neutrino leaves that region. This is exactly like what happens for oscillation due to

weak interactions, except for the fact that in the case of quartic interaction induced by

torsion, leptons and baryons all contribute to the effective mass of neutrinos. It should

be noted that the coupling constants λ cannot be fixed by appealing to a more fun-

damental theory, but are in principle measurable by looking at oscillations when the

neutrinos pass through different media, such as stars with different baryon densities,

or nuclear reactor cores.

A non-vanishing λV for any fermion requires that the left-handed component of

the fermion does not couple to torsion with the same strength as the right-handed

component. Thus chiral symmetry is broken by torsion, or alternatively, by the quartic

term which has its origin in spacetime geometry. It should be noted that it is not only

neutrinos, but all fermions get a contribution to their masses from this geometrical

mechanism. Even if I assume that the contribution to effective mass is of the same

order for all fermions in the same background matter density, the mass of very dense

stars can be significantly larger than what is calculated from their baryon count. This

can be expected to affect stellar models, dark matter estimates, and cosmology.

5.2 weak interactions

Neutrinos passing through matter will also interact with it via electroweak gauge

fields. In this case, if I look at the effective four-fermion interaction at lowest order,

only the interactions with electrons are relevant. This is because the weak interaction

couples flavour eigenstates of the neutrinos with other fields; νe couples to electrons via

both charged and neutral currents, while νµ couples to electrons only via the neutral

current. The modification of the mixing angle due to weak interactions in normal

matter is straightforward to calculate [82], as I will show in outline below. The effective

Lagrangian due to the charged current interaction can be written as

Lcc = −
GF√

2

(
ψ̄eγ

I(1− γ5)ψe

) (
ν̄eγI(1− γ5)νe

)
, (5.26)
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where a Fierz identity has been used (see Appendix F). The (elastic) forward scattering

amplitude provides the contribution to the Hamiltonian,
√

2GF
〈
ψ̄eγ

I(1− γ5)ψe
〉
(ν̄eLγI

νeL) '
√

2GFneν
†
eLνeL . Normal matter does not contain muons, so νµ does not have a

charged current interaction.

Both flavours of neutrinos have the same neutral current interactions, so that the

contribution appears as a common term to the Hamiltonian,

Vnc =
√

2GF ∑
f=e,p,n

n f

[
I f
3L − 2 sin2 θW Q f

]
, (5.27)

where I f
3L is the third component of weak isospin for the left-handed component of the

fermion f and Q f is its charge. For electrically neutral normal matter, the electron and

proton contributions cancel each other and I am left with only the neutron contribution,

equal to −
√

2GFnn/2 for both types of neutrinos. The Hamiltonian, diagonal in the

space of mass eigenstates, can thus be written in flavour space as

H = HcI +
∆m2

4E

− cos θ sin θ

sin θ cos θ

+

√2GFne 0

0 0

 . (5.28)

Here I have written Hc for the common terms in the Hamiltonian, and ∆m2 = ρ2
∣∣λ2

ν2

−λ2
ν1

∣∣ . The effective mixing angle θ̃, including the effects of both the geometric and

weak contributions, for constant densities is thus given by

tan 2θ̃ =
∆m2 sin 2θ

∆m2 cos 2θ − 2
√

2GFneE
. (5.29)

This formula is for ultrarelativistic neutrinos, and thus valid only in regions where mat-

ter density is not too high. For regions with low matter density and ne ' np ≥ nn and

ne → 0 , I find that the right hand side is proportional to ne/E . For three generations of

leptons I can make similar substitutions into the standard formula for neutrino oscilla-

tions. For neutrinos passing through regions where the matter density is not constant

(MSW effect [74, 85, 86]), nonlinearity introduces additional complications particularly

for very large matter densities, since effective masses of neutrinos and thus ∆m2 , can

vary greatly in such situations. I will not attempt to do that calculation here.

If I am interested only in calculating neutrino oscillations, I could take a pragmatic

approach and start with Eq. (5.21) as the defining interaction term. This term is very

similar to what is called non-standard neutrino interactions (NSI) [87–90], in this case
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flavour-changing in the neutrino sector. However, the geometrical origin of this inter-

action means that all fermions are in quartic interaction with one another, including

themselves. At low energies and for matter at normal densities, the only effect of this

is expected to be on neutrino dynamics as I have discussed in this chapter, but at high

energies as well as for high densities of matter, for example in stellar collapse or in

the early universe, I can expect this interaction to play an important role. It is also

not meaningful to talk about the quartic interactions in the absence of gravity. This is

related to the fact that the quartic term appears to make the model nonrenormalizable

by power counting. Because of their origin from curved spacetime, the quartic cou-

plings contain in them a factor of
√

κ and thus must vanish in the flat space limit. So

the counterterms in curved spacetime will have to involve curvature, thus the question

of renormalizability cannot be addressed without a theory of quantum gravity, as has

been noted elsewhere [91].

The second point is about the size of the quartic term. Is the contribution of this

term to neutrino oscillations negligibly small? I think that this question cannot be an-

swered purely theoretically. Unlike in the case of weak interactions, where the energy

required to create W-boson pairs from the vacuum sets the scale of the four-fermion

interaction (and the oscillation formula can be calculated directly from quantum field

theory [92]), here the scale is not related to the quantum dynamics of the contorsion Λ ,

which does not in fact have any dynamics. Therefore the coupling constants λ are free

and can be set only by comparison with experimental data, not from any theoretical

argument. By comparing with the NSI couplings, I can expect that the λ are one or two

orders of magnitude smaller than the effective quartic couplings coming from weak

interactions, i. e., than the Fermi constant. If the neutrinos are massless in vacuum, the

flavour-changing interaction becomes crucial for oscillations inside matter, even if it is

small.

It should be noted that the use of torsion for oscillation of massless neutrinos has

been proposed earlier in [93]. A coupling of neutrinos to torsion analogous to the last

term in Eq. (5.17) was proposed, with different couplings for different species of neu-

trinos. In this case the torsion is proportional to the spin density of the background,

which for normal matter – i. e. if spins are not aligned – averages to zero over macro-

scopic volumes, so the effect on oscillations is very small. By breaking chiral symmetry

in the coupling of fermions to torsion, and by using the fact that all fermions couple

to torsion, I expect to find a much larger effect. There have been proposals of nonuni-

versal gravitational couplings of neutrinos leading to oscillations [94, 95], with the
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nonuniversality of couplings being subject to experimental constraints. In this case the

equivalence principle is violated at the quantum level. In our proposal, nonuniversality

of fermion couplings is restricted to their couplings with torsion, while their coupling

with background gravity is universal – all particles continue to fall at the same rate.





6
P E RT U R B AT I O N S I N V I E R B E I N - E I N S T E I N - PA L AT I N I

F O R M A L I S M

General relativity is a nonlinear theory. A linearised approximation to the theory can

be obtained by considering the weak field limit of gravitational field. The spacetime

metric can be considered as a flat background metric (Minkowski) plus a perturba-

tion [17]. Einstein’s equation turns out to be a linear second order equation in the

perturbation. In this chapter1 I will consider the weak field limit of the vierbein-

Einstein-palatini variables. The idea of perturbing the vierbein is not a new one (a

representative list is [96–104]), but our work differs from earlier work in an important

manner. In all papers dealing with vierbein perturbations that I have been able to find,

the perturbations were considered around a flat background spacetime. In such cases,

the background spacetime and the internal Lorentz space are identical, and as a result

the background tetrad can be written as a Kronecker delta , eI
µ = δI

µ. Furthermore, the

background connection is then trivially flat and torsion-free, which means no attention

is paid to the independent nature of the spin connection. In this chapter I will assume

a general curved background and an independent spin connection, so tetrad fields are

not constant, while the absence of torsion is implemented by the equations of motion

for the spin connection only in the absence of fermionic matter. When fermions are

coupled to the spin connection, torsion remains as a part of the spin connection, and

the latter cannot be completely eliminated from the perturbation equations. Gravity

with torsion has seen interests in many places [101, 105–108]. I am interested in pertur-

bation of tetrads and spin connection in particular, as torsion can be written in terms

of these variables.

1 The work reported here is based on the paper "Weak field limit in vierbein-Einstein-Palatini formalism
and Fierz-Pauli Equation", Subhasish Chakrabarty and Amitabha Lahiri, arXiv:1507.03884 [gr-qc].

65



66 perturbations in vierbein-einstein-palatini formalism

I will briefly recapitulate the formalism of metric perturbation theory. In this, the

spacetime metric is written as a background metric plus a perturbation. Often we are

interested in a flat background, in which case

gµν = ηµν + hµν , (6.1)

with

|hµν| � 1 (6.2)

for each component. It should be noted that hµν is often defined with a factor of

G or κ so that its smallness as given by the above equation becomes apparent. The

inverse is given by

gµν = ηµν − hµν , (6.3)

where all indices are raised and lowered with η .

The linearised Riemann and Ricci tensors, and the Ricci scalar, are thus

Rµνρσ = ∂ρ∂νhµσ + ∂σ∂µhνρ − ∂σ∂νhµρ − ∂ρ∂µhνσ , (6.4)

Rµν =
1
2

[
∂σ∂νhσ

µ + ∂σ∂µhσ
ν − ∂µ∂νh−�hµν

]
, (6.5)

R = ∂ρ∂σhρσ −�h , (6.6)

where h is the trace of the perturbation, h = ηµνhµν . The linearised Einstein’s equation

in vacuum follows from these,

1
2
[∂σ∂νhσ

µ + ∂σ∂µhσ
ν − ∂µ∂νh−�hµν − ηµν∂ρ∂σhρσ + ηµν�h] = κTµν , (6.7)

which is the linearised form of Gµν = κTµν. The linearised version written above is for a

special situation where the background is taken to be flat. I will consider perturbations

around a general curved background. I will denote the background metric by ḡµν so

that the total metric is written as gµν = ḡµν + hµν. Then the Christoffel symbols are

Γ̂α
µν = ¯̂Γ

α

µν−
1
2

hαλ
[
∂µ ḡλν + ∂ν ḡµλ − ∂λ ḡµν

]
+

1
2

ḡαλ
[
∂µhλν + ∂νhµλ − ∂λhµν

]
+O(h2),

(6.8)
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where now the indices are lowered and raised by ḡµν and its inverse ḡµν , respectively,

and quantities pertaining to the background are denoted by a bar.

By calculating the Einstein tensor using these Christoffel symbols, I can write the

Einstein’s equation for an arbitrary background,

R̄µν −
1
2

(
ḡµν ḡαβ + hµν ḡαβ − ḡµνhαβ

)
R̄αβ + R1

µν −
1
2

ḡµν ḡαβR1
αβ = 8πGTµν , (6.9)

where the Ricci tensor R̄µν is derived from the background metric ḡµν , and the quantity

R1
µν is the part of the Ricci tensor linear in h . This equation, however, contains the

background equation R̄µν − 1
2 ḡµνR̄ = 8πGT̄µν which needs to be eliminated. It should

be noted that if the stress-energy tensor is calculated from a matter action by varying

the metric, Tµν and T̄µν are not equal in general. Thus I can finally write the equation

for gravitational perturbations as

1
2

(
ḡµνhαβ − hµν ḡαβ

)
R̄αβ + R1

µν −
1
2

ḡµν ḡαβR1
αβ = 8πG

(
Tµν − T̄µν

)
. (6.10)

In this chapter, I will consider the weak field limit of the vierbein-Einstein-Palatini vari-

ables by perturbing them around arbitrary background. The perturbation of the tetrads

can be related to metric perturbation in General Relativity. For the spin conneciton, as

long as it is independent, the perturbation should be treated as an independent quan-

tity as well. Although the spin connection is expressible in terms of the tetrad in the

absence of matter, in particular fermionic matter, as Eq. (2.28) relies crucially on the

connection being torsion-free, which in this formalism follows from the matter action

being independent of the spin connection AI J
µ . But in general one should treat the

tetrads and spin connection as independent variables. Thus, perturbations of these

variables around some background solution of the equations of motion should be con-

sidered as independent objects. This is because perturbations are off-shell objects a

priori and need not satisfy the same equations as the background solutions.

For the present purpose I will consider the perturbation of the co-tetrad first and

write eµ
I as a sum of the background and perturbation,

eµ
I = ēµ

I + f µ
I , (6.11)

where f µ
I is much smaller than ēµ

I (more precisely, Tr(ēI
µ f µ

I ) � 1) . I will denote back-

ground quantities by a bar on top. In order to calculate the perturbation of tetrads, I



68 perturbations in vierbein-einstein-palatini formalism

use their definition eµ
I eI

ν = δ
µ
ν = ēµ

I ēI
ν, where the internal index is raised and lowered

with ηI J as before. Thus I find

eI
µ = ēI

µ − ēJ
µ ēI

α f α
J . (6.12)

I will often denote −ēJ
µ ēI

α f α
J as f̃ I

µ. The spacetime indices will be raised and lowered by

the total spacetime metric gµν = eI
µeIν when needed. By writing the background metric

as ḡµν = ēI
µ ēIν , I can identify the metric perturbation hµν in terms of the background

tetrad ēI
µ and the tetrad perturbation f̃ I

µ as

hµν = ēIµ f̃ I
ν + ēIν f̃ I

µ . (6.13)

The background now is any general spacetime, not necessarily flat. I will also write the

spin connection as a sum of its value in the background spacetime and a perturbation,

AI J
µ = ĀI J

µ + aI J
µ . (6.14)

However, since all components ĀI J
µ of the background spin connection may vanish, it

is not sensible to treat aI J
µ as small perturbation. In particular, I will not neglect terms

quadratic in aI J
µ when calculating the action. Thus I calculate the affine connection up

to first order in the perturbation f as

Γα
µν = Γ̄α

µν + ēα
I ∂µ f̃ I

ν + f α
I ∂µ ēI

ν + ĀI J
µ ēJ

ν f α
I + aI J

µ ēJ
ν f α

I + aI J
µ ēα

I f̃ J
ν . (6.15)

Here Γ̄ corresponds to the background spacetime,

Γ̄α
µν = ēα

I ∂µ ēI
ν + ĀI

µJ ē
J
ν ēα

I . (6.16)

I will also write the curvature in terms of Ā and a ,

FI J
µν = F̄I J

µν +F I J
µν , (6.17)

where F̄ is the background curvature and F , the extra part due to perturbation, can

be written in the form

F I J
µν = D̄µaI J

ν − D̄νaI J
µ + [aµ, aν]

I J , (6.18)
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with D̄ being the covariant derivative corresponding to the background spin connec-

tion Ā . The perturbed vierbein-Einstein-Palatini action is thus

S =
1

16πG

∫
|e| d4x

[
FI J

µν ēµ
I ēν

J + 2FI J
µν ēµ

I f ν
J + FI J

µν f µ
I f ν

J

]
+ SM . (6.19)

The determinant |e| ≡ |ēI
µ + f̃ I

µ| is now a polynomial in f . The lowest order field

equations will be of first order in f . The variation of the determinant produces

δ|e| = −|e|(ēK
α + f̃ K

α )δ f α
K , (6.20)

using which I obtain field equations by varying the vierbein-Einstein-Palatini action of

Eq. (6.19),

(F̄I J
αµ +F I J

αµ)(ēα
I + f α

I )−
1
2
(ēJ

µ + f̃ J
µ)(F̄I J

αβ +F
I J
αβ)(ē

α
K + f α

K)(ē
β
L + f β

L ) = 8πGTµνeνJ . (6.21)

Of course, I could have obtained these directly from Eq. (2.38) (neglecting O(κ2) terms)

by replacing e → ē + f̃ and A → Ā + a . However, it is useful to construct the action

for the perturbations, as I will later consider matter couplings.

Subtracting the vierbein-Einstein-Palatini equation for the background, I get the

equation of motion for the vierbein-Einstein-Palatini perturbations,

F̄I J
αµ f α

I −
1
2

F̄KL
αβ

[
f̃ J
µ ēα

K ēβ
L + 2ēJ

µ f α
K ēβ

L

]
+F I J

αµ (ēα
I + f α

I )

−1
2
FKL

αβ

[
ēJ

µ ēα
K ēβ

L + f̃ J
µ ēα

K ēβ
L + 2ēJ

µ f α
K ēβ

L

]
= 8πG

(
TµνeνJ − T̄µν ēνJ

)
.

(6.22)

This is a generic equation in the sense that I have not considered any particular

background, or required that the background be flat, so this is the equation of pertur-

bations around a general background spacetime.





7
C O N C L U S I O N A N D S U M M A RY

I will conclude the thesis with chapter-wise summary of the calculations and results

of different chapters.

• Summary of chapter 2:

In chapter 2 I have introduced the tetrads and the spin connection which are

the basic variables in the vierbein-Einstein-Palatini formalism. I have shown how

torsion is non-zero at the level of action. I have written the Riemann tensor,

Ricci tensor and Ricci scalar in terms of the tetrads and the spin connection and

eventually defined the action. We have seen that in case of vacuum or minimally

coupled bosonic field, the vierbein-Einstein-Palatini formalism is equivalent to

General Relativity. I have also discussed the torsion-free tetrad formulation of

General Relativity.

• Summary of chapter 3:

In chapter 3 I have considered different matter fields in the vierbein-Einstein-

Palatini formalism. For scalar field and electromagnetic field, I have shown that

the torsion-free condition can be imposed a priori. I have considered fermionic

field in the tetrad formulation as well as the vierbein-Einstein-Palatini formalism.

We have seen that the Dirac equation and Einstein’s equation get contributions

due to the spin-torsion coupling. I have shown that torsion does not affect the

conservation of current of the fermionic field.

• Summary of chapter 4:

In chapter 4 I have discussed conformal transformations in terms of the tetrads

and the spin connection. I have shown that at the level of action, the transforma-

tion of the spin connection remains indeterminate and one can make different

choices of its transformation. I have considered two such choices and shown how

they affect the dynamics of different fields. For dynamically generated or on-shell
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torsion, I have shown that it breaks the conformal invariance of the matter field

equations. I have written a general conformal transformation of the off-shell spin

connection.

• Summary of chapter 5:

In chapter 5 we have seen how the four-fermion interaction resulting from spin-

torsion coupling leads to effective masses for neutrinos. I have shown that the

Standard Model cannot explain the mass generation for neutrinos although mass

is necessary to explain neutrino oscillations. I have written a chiral symmetry

breaking Lagrangian for fermions and shown how it can potentially give masses

to neutrinos. I have also briefly discussed neutrino oscillations due to weak in-

teractions.

• Summary of chapter 6:

In chapter 6 I have considered the perturbations of the tetrads and the spin

connections. Starting with the weak field limit in General Relativity where the

background is taken to be flat, I have gone to perturbations on non-flat back-

ground. I have written the most general equation of perturbations in terms of

the vierbein-Einstein-Palatini variables.

Overall, this thesis is based on a formalism of gravity that looks like other gauge

theories. This formalism not only allows one to consider fermions in curved spacetime,

but also gives new insights. One of the reasons why torsion is usually neglected is that

its effects are small compared to the other terms in field equations. But we have seen

that torsion can potentially lead the effective mass generation of neutrinos in regions of

fermion density. The contribution in the mass term comes from all fermions including

leptons and baryons, and it affects not only neutrinos but all the fermions. In normal

matter densities this effect can be negligible for heavier fermions, but in extreme ob-

jects it could lead to observable effects and thus open up interesting possibilities of

future works.
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A
T O R S I O N , C U RVAT U R E A N D B I A N C H I I D E N T I T I E S

a.1 contorsion tensor

The covariant derivatives on a vector v and a covector w are defined respectively as

∇µvν = ∂µvν + Γν
µλvλ , (A.1)

∇µwν = ∂µwν − Γλ
µνwλ . (A.2)

I will find the expression for the affine connection in terms of the Christoffel sym-

bols and contorsion tensor using metric compatibility i. e.,

0 = ∇αgµν = ∂αgµν − Γλ
αµgλν − Γλ

ανgµλ . (A.3)

Cyclic permutation in the indices α, µ, ν gives

∂µgνα − Γλ
µνgλα − Γλ

µαgνλ = 0 , (A.4)

∂νgαµ − Γλ
ναgλµ − Γλ

νµgαλ = 0 . (A.5)

Now (A.4) + (A.5) − (A.3) gives

(Γλ
µν + Γλ

νµ)gαλ + (Γλ
να − Γλ

αν)gµλ + (Γλ
µα − Γλ

αµ)gνλ = ∂µgνα + ∂νgαµ

− ∂αgµν

⇒ (Γλ
µν + Γλ

νµ)gαλ + Cλ
ναgµλ + Cλ

µαgνλ = ∂µgνα + ∂νgαµ − ∂αgµν , (A.6)

where C is the torsion tensor defined by Eq. (1.6). I will break the affine connection in

symmetric and antisymmetric parts in the last two indices,
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Γα
µν =

1
2
(Γα

µν + Γα
νµ) +

1
2

Cα
µν

⇒ Γα
µν + Γα

νµ = 2Γα
µν − Cα

µν . (A.7)

It should be noted that the symmetric part is not only the Christoffel symbols

because although the torsion tensor is antisymmetric in the last two indices, I can

always construct a symmetric combination in the first two indices. Using the above I

replace the symmetric part in Eq. (A.6) and get

Γα
µν = Γ̂α

µν −
1
2
(C α

µν + C α
νµ − Cα

µν) . (A.8)

Here Γ̂α
µν are the Christoffel symbols given by Eq. (1.3) and 1

2 (C
α

µν + C α
νµ − Cα

µν) ≡
Sα

µν is the contorsion tensor. Clearly the first two terms in Sα
µν are symmetric in µν.

Also, the contorsion tensor is antisymmetric in the first and the last indices.

a.2 riemann curvature tensor

In General Relativity the Riemann tensor is defined by

(∇̂µ∇̂ν − ∇̂ν∇̂µ)vρ = R̂ρ
σµνvσ . (A.9)

I will find the expression of the above commutator for a general affine connection with

non-zero torsion. I will find this for vector, covector and tensor respectively.

(∇µ∇ν −∇ν∇µ)vρ = ∂µ∇νvρ − Γσ
µν∇σvρ + Γρ

µσ∇νvσ − (µ↔ ν)

= ∂µ∂νvρ + (∂µΓρ
νλ)v

λ + Γρ
νλ∂µvλ − Γσ

µν∇σvρ + Γρ
µσ∂νvσ

+ Γρ
µσΓσ

νλvλ − (µ↔ ν)

= Rρ
σµνvσ − Cσ

µν∇σvρ , (A.10)

where

Rρ
σµν = ∂µΓρ

σν − ∂νΓρ
σµ + Γρ

µαΓα
νσ − Γρ

ναΓα
µσ . (A.11)
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Proceeding in the same way as above for a covector wσ I get

(∇µ∇ν −∇ν∇µ)wσ = −Rρ
σµνwρ − Cρ

µν∇ρwσ . (A.12)

For a general tensor Tα1α2...
β1β2...,

(∇µ∇ν −∇ν∇µ)T
α1α2...

β1β2... = Rα1
α′1µν

Tα′1α2...
β1β2... + Rα2

α′2µν
Tα1α′2...

β1β2... + · · ·

−Rβ′1
β1µν

Tα1α2...
β′1β2... − Rβ′2

β2µν
Tα1α2...

β1β′2...

−Cρ
µν∇ρTα1α2...

β1β2... − · · · .

(A.13)

a.3 symmetries and bianchi identities

a.3.1 Skew symmetry

Riemann tensor is antisymmetric in the last pair of indices

Rρ
σµν = −Rρ

σνµ , (A.14)

by definition. I will find out the same in the first pair of indices. For this purpose I will

use Eq. (A.13) for metric tensor. Using metric compatibility,

0 = (∇µ∇ν −∇ν∇µ)gαβ = −Rρ
αµνgρβ − Rρ

βµνgαρ

⇒Rαβµν = −Rβαµν . (A.15)

So skew symmetry is same in General Relativity and torsion gravity.

a.3.2 First Bianchi identity

Using the expression for Riemann tensor from Eq. (A.11), I have
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Rρ

[σµν]
= ∂[µΓρ

σν]
− ∂[νΓρ

σµ]
+ Γρ

[µ|α|Γ
α
νσ] − Γρ

[ν|α|Γ
α
µσ]

= ∂[µCρ
νσ + Γρ

[µ|λ|C
λ

νσ]

= ∇[σCρ

µν]
+ Cρ

λ[σ
Cλ

µν] . (A.16)

a.3.3 Pairwise symmetry

In General Relativity Riemann tensor is symmetric under the interchange of first and

last pair of indices. I will use skew symmetry and first Bianchi identity to derive the

difference between Rρσµν and Rµνρσ. I have

Rρσµν − Rµνρσ = Rρσµν − (∇[νC|µ|ρσ] + Cµλ[νCλ
ρσ] − Rµρσν − Rµσνρ)

= Rρσµν − Rρµσν − Rσµνρ −∇[νC|µ|ρσ] − Cµλ[νCλ
ρσ]

= Rρσµν − (∇[µC|ρ|σν] + Cρλ[µCλ
σν] − Rρσνµ − Rρνµσ)

− (∇[µC|σ|νρ] + Cσλ[µCλ
νρ] − Rσνρµ − Rσρµν)

−∇[νC|µ|ρσ] − Cµλ[νCλ
ρσ]

= Rσνρµ − (Rρνσµ + Rρσµν)−∇[µC|ρ|σν] + Cρλ[µCλ
σν]

−∇[µC|σ|νρ] − Cσλ[µCλ
νρ] −∇[νC|µ|ρσ] − Cµλ[νCλ

ρσ]

= Rσνρµ − Rρµσν −∇[µC|σ|νρ] − Cσλ[µCλ
νρ]

−∇[νC|µ|ρσ] − Cµλ[νCλ
ρσ] . (A.17)

Under ρ↔ µ and σ↔ ν in the above, I get

−(Rρσµν − Rµνρσ) = Rνσµρ − Rµρνσ −∇[ρC|ν|σµ] − Cνλ[ρCλ
σµ]

−∇[σC|ρ|µν] − Cρλ[σCλ
µν]

= Rσνρµ − Rρµσν −∇[ρC|ν|σµ] − Cνλ[ρCλ
σµ]

−∇[σC|ρ|µν] − Cρλ[σCλ
µν] . (A.18)

Subtracting Eq. (A.18) from Eq. A.17 produces
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Rρσµν − Rµνρσ =
1
2

(
∇[ρC|ν|σµ] + Cνλ[ρCλ

σµ] +∇[σC|ρ|µν] + Cρλ[σCλ
µν]

−∇[µC|σ|νρ] − Cσλ[µCλ
νρ] −∇[νC|µ|ρσ] − Cµλ[νCλ

ρσ]

)
. (A.19)

a.3.4 Second Bianchi identity

Replacing wσ by ∇λwσ in Eq. (A.12) and using Eq. (A.13), I get

(∇µ∇ν −∇ν∇µ)∇λwσ = −Rρ
λµν∇ρwσ − Rρ

σµν∇λwρ − Cρ
µν∇ρ∇λwσ . (A.20)

Again, taking ∇λ on Eq. (A.12) yields

∇λ(∇µ∇ν −∇ν∇µ)wσ = −(∇λRρ
σµν)wρ − Rρ

σµν∇λwρ − (∇λCρ
µν)∇ρwσ

−Cρ
µν∇λ∇ρwσ . (A.21)

Now, antisymmetrising Eq. (A.20) and Eq. (A.21) in µνλ, we see that left hand sides

of both the equations become equal. Thus I get

Rρ

[λµν]
∇ρwσ + Cρ

[µν
∇|ρ|∇λ]wσ = (∇[λRρ

|σ|µν]
)wρ + (∇[λCρ

µν]
)∇ρwσ

+Cρ

[µν
∇λ]∇ρwσ . (A.22)

Using Eq. (A.12), I can write

Cρ

[µν
∇|ρ|∇λ]wσ = Cρ

[µν
∇λ]∇ρwσ − Rα

σρ[λCρ

µν]
wα − Cα

ρ[λCρ

µν]
∇αwσ . (A.23)

Using the above equation and first Bianchi identity in Eq. (A.22), I get

∇[λRρ

|σ|µν]
= −Rρ

σα[λ
Cα

µν] . (A.24)





B
A D I F F E R E N T WAY T O L O O K AT T H E C O N F O R M A L S C A L A R

I can write the torsionful Ricci scalar as the torsion-free Ricci scalar plus the torsion

terms as

R = R̂− 2∇̂νCµ ν
µ − Cµ

µσCν σ
ν +

1
4

CµνσCµνσ +
1
2

CµνσCνµσ ≡ R̂− f (C) . (B.1)

In the scalar field Lagrangian in the action of Eq. (4.56), I will replace R̂ in the R̂φ2

term with R + f (C); f (C) being the explicit torsion terms above. The total action in

vierbein-Einstein-Palatini formalism, with this modification, now reads as

S[e, A, φ] =
∫
|e|d4xFI J

µνeµ
I eν

J

(
1

2κ
− φ2

12

)
−
∫
|e|d4x

[
1
2

eµ
I eνI∂µφ∂νφ +

1
6

φ2∇̂µCα µ
α

+
1
12

(
Cµ

µσCν σ
ν −

1
4

CµνσCµνσ −
1
2

CµνσCνµσ

)
φ2
]

. (B.2)

The equations obtained from this are

δeν
J : Rµν −

1
2

gµνR = κ

(
∂µφ∂νφ− 1

2
gµνgαβ∂αφ∂βφ +

1
6
(Rµν −

1
2

gµνR)φ2

+
1
6

[
gµν∇̂σ∇̂σφ2 − ∇̂µ∇̂νφ2

])
+ κ f̃ (C), (B.3a)

δAI J
ν : AI J

µ = ω I J
µ [e], (B.3b)

δφ : ∇̂µ∇̂µφ− 1
6

Rφ− φ

(
1
3
∇̂µCα µ

α +
1
6

Cµ
µσCν σ

ν −
1

24
CµνσCµνσ

− 1
12

CµνσCνµσ

)
= 0 . (B.3c)
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Here f̃ (C) in Eq. (B.3a) includes terms that contain torsion explicitly which go away

upon using Eq. (B.3b) which is the torsion-free condition. R becomes R̂ upon using the

torsion-free condition and thus the scalar Eq. (4.67c) becomes

∇̂µ∇̂µφ− 1
6

R̂φ = 0 . (B.4)

The scalar field equation thus gets back the torsion-free form given by Eq. (4.5). The

modification in Eq. (B.1) leads to vanishing torsion on-shell. Thus I can identify the

equations with those in the usual metric formalism.

Although I have considered a formalism which is torsion-free on-shell, Eq. (B.3c) is

rather a more general equation; it will remain invariant even if torsion is non-zero

because in such a case the torsion terms will cancel those in the Rφ term and the

equation will essentially be reduced to Eq. (B.4).



C
Λ A S A U X I L I A RY F I E L D

I can decompose the total spin connection AI J
µ in terms the torsion-free component ω I J

µ

and contorsion component ΛI J
µ as

AI J
µ = ω I J

µ + ΛI J
µ , (C.1)

I can write the curvature as

FI J
µν(A) = F̂I J

µν(ω) + ∂µΛI J
ν − ∂νΛI J

µ + ω I
µKΛKJ

ν −ω I
νKΛKJ

µ + ΛI
µKωKJ

ν −ΛI
νKωKJ

µ

+ΛI
µKΛKJ

ν −ΛI
νKΛKJ

µ .

(C.2)

Let us see the contribution of the terms linear in Λ in the vierbein-Einstein-Palatini

action. I consider the integral

I =
∫
|e|d4x(∂µΛI J

ν − ∂νΛI J
µ + ω I

µKΛKJ
ν −ω I

νKΛKJ
µ + ΛI

µKωKJ
ν −ΛI

νKωKJ
µ )eµ

I eν
J .

(C.3)

Considering the first, third and the sixth terms from above and denoting them as A

together,

A = eµ
I eν

J ∂µΛI J
ν + eµ

I eν
J ω I

µKΛKJ
ν − eµ

I eν
J ΛI

νKωKJ
µ

= ∂µ(e
µ
I eν

J ΛI J
ν )−ΛI J

ν eµ
I ∂µeν

J −ΛI J
ν eν

J ∂µeµ
I + eµ

I eν
J ω I

µKΛKJ
ν − eµ

I eν
J ΛI

νKωKJ
µ . (C.4)

I will call eµ
I eν

J ΛI J
ν ≡ Λµ. Thus

A = ∂µΛµ −ΛI J
ν eµ

I ∂µeν
J −ΛI J

ν eν
J ∂µeµ

I + eµ
I eν

J ω I
µKΛKJ

ν − eµ
I eν

J ΛI
νKωKJ

µ . (C.5)
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Considering the first, third and fourth term from Eq. (C.5), I have

A.1 = ∂µΛµ −ΛI J
ν eν

J ∂µeµ
I + eµ

I eν
J ω I

µKΛKJ
ν

= ∂µΛµ −ΛKJ
ν eν

J eα
KeI

α∂µeµ
I + eµ

I eν
J ω I

µKeK
α eα

LΛLJ
ν

= ∂µΛµ + Λα(eµ
I ∂µeI

α + ω I
µKeK

α eµ
I )

= ∂µΛµ + ΛαΓ̂µ
µα

= ∇̂µΛµ . (C.6)

The remaining terms of A are

A.2 =−ΛI J
ν eµ

I ∂µeν
J − eµ

I eν
J ΛI

νKωKJ
µ

=−ΛIK
ν eµ

I eα
KeJ

α∂µeν
J − eµ

I eν
J ΛI

νLeαKeαLωKJ
µ

= ΛIK
ν eµ

I eα
Keν

J ∂µeJ
α + ΛIL

ν eµ
I eα

Lω J
µKeK

α eν
J

= ΛIK
ν eµ

I eα
K(e

ν
J ∂µeJ

α + ω J
µKeK

α eν
J )

= ΛIK
ν eµ

I eα
KΓ̂ν

µα

=
1
2

ΛIK
ν (eµ

I eα
K − eα

I eµ
K)Γ̂

ν
µα

= 0 . (C.7)

Here I have used the antisymmetry of Λ and the symmetry of Γ̂. Denoting the second,

fourth and fifth terms of the integral I as B and proceeding the same way as above, I

find that

B = ∇̂µΛµ . (C.8)

Taking the above calculations into consideration, I get

I =
∫
|e|d4x 2 ∇̂µΛµ . (C.9)

Because this is a total divergence, the above integral can be taken to the boundary and

neglected compared to the other terms of the total vierbein-Einstein-Palatini action.

The effective action is thus

SVEP =
1

2κ

∫
|e|d4x

(
F̂I J

µν + ΛI
µKΛKJ

ν −ΛI
νKΛKJ

µ

)
eµ

I eν
J . (C.10)

This appears in Eq. (5.17).



D
γ - M AT R I C E S

I am working in the (−+++) signature and the properties of γ-matrices are different

from those in the (+−−−) signature. I will mention the effect of signature change at

the end of this Appendix. The basic anti-commutator is

{γI , γJ} = 2ηI J . (D.1)

Thus in the (−+++) signature

γ2
0 = −I , (D.2)

γ2
i = I, (i = 1, 2, 3) . (D.3)

The Hermiticiy of the γ-matrices is as follows

γ†
0 = −γ0 , (D.4)

γ†
i = γi , (D.5)

which can be written in a compact form as

γ†
I = γ0γIγ0 . (D.6)

d.1 σ-matrix

The σ-matrix is defined as

σI J =
i
2
[γI , γJ ] . (D.7)
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The Hermitian conjugate of the σ-matrix can be calculated as

σ†
I J = −

i
2
[γI , γJ ]

†

= − i
2

(
γ†

J γ†
I − γ†

I γ†
J

)
= − i

2
(
γ0γJγ

2
0γIγ0 − γ0γIγ

2
0γJγ0

)
= − i

2
(−γ0γJγIγ0 + γ0γIγJγ0)

= − i
2

γ0[γI , γJ ]γ0

= −γ0σI Jγ0 . (D.8)

One useful relation is the commutator of γ and σ. In order to find the expression

of the commutator note that

σI JγK =
i
2
[γI , γJ ]γK

=
i
2
(γIγJγK − γJγIγK)

=
i
2
(2ηJKγI − γIγKγJ − 2ηIKγJ + γJγKγI)

=
i
2
(4ηJKγI − 4ηIKγJ + γKγIγJ − γKγJγI)

= 2i (ηJKγI − ηIKγJ) + γKσI J . (D.9)

Thus I get

[γK, σI J ] = 2i(ηIKγJ − ηJKγL) . (D.10)

d.2 fifth γ-matrix

One more useful quantity is the fifth gamma matrix γ5 defined as

γ5 = iγ0γ1γ2γ3 =
i

4!
εI JKLγIγJγKγL . (D.11)

It is easy to see from the above definition that γ5 has the properties

γ†
5 = γ5 , (D.12)

γ2
5 = I . (D.13)
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Some identities involving γ5 are

{γI , γ5} = 0 , (D.14)

{γK, σI J} = 2εI JKLγLγ5 , (D.15)

[σI J , γ5] = 0 . (D.16)

d.3 change of signature

Under the change of signature from (−+++) to (+−−−) which is the more com-

mon signature used in Quantum Field Theory textbooks, I need to multiply the γ-

matrices with −i, i. e., γI → −iγI . In the signature (+ − −−) properties of the γ-

matrices are given by

γ2
0 = I , (D.17)

γ2
i = −I , (D.18)

γ†
0 = γ0 , (D.19)

γ†
i = −γi . (D.20)

The Hermiticity of the γ-matrices is still given in the compact form of Eq. (D.6). γ5

and its properties are invariant under the signature change. The σ-matrix is defined

in the same as in Eq. (D.7). Let us see how this affects the Hermitian conjugate of the

σ-matrix.

σ†
I J = −

i
2
[γI , γJ ]

†

= − i
2

(
γ†

J γ†
I − γ†

I γ†
J

)
= − i

2
(
γ0γJγ

2
0γIγ0 − γ0γIγ

2
0γJγ0

)
= − i

2
(γ0γJγIγ0 − γ0γIγJγ0)

=
i
2

γ0[γI , γJ ]γ0

= γ0σI Jγ0 . (D.21)
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The commutator [γK, σI J ] however, remains unaffected under the change of signa-

ture. This because the calculations shown in Eq. (D.9) are independent of the signature

of the metric.



E
C H I R A L S Y M M E T RY B R E A K I N G A N D C U R R E N T

C O N S E RVAT I O N

Let us see how geometrical breaking of chiral symmetry affects the current conserva-

tion of electron and neutrino. I will consider the left handed electron-neutrino doublet

ΨeL =

νL

eL

 with torsion coupling constant λeL and right handed electron singlet

eR with coupling constant λeR. Different coupling constants for right handed and left

handed components imply that chiral symmetry is broken here. The spinor covariant

derivatives are given as

DµψeL = ∂µψeL −
i
4

ω I J
µ σI JψeL −

i
4

λeLΛI J
µ σI JψeL , (E.1)

DµeR = ∂µeR −
i
4

ω I J
µ σI JeR −

i
4

λeRΛI J
µ σI JeR . (E.2)

The action of Eq. (5.18) is thus given by

S =
∫
|e|d4x

[
1

2κ F̂I J
µν(ω)eµ

I eν
J +

i
2

(
ψ̄eLγKeµ

K D̂ f
µψeL − (ψ̄eLγKeµ

K D̂ f
µψeL)

†

+ēRγKeµ
K D̂ f

µeR − (ēRγKeµ
K D̂ f

µeR)
†
)
+ 1

2κ ηKLΛIK
[µ ΛLJ

ν]
eµ

I eν
J

+ 1
8 ΛI J

µ eµ
K
(
λeLψ̄eL{γK, σI J}ψeL + λeR ēR{γK, σI J}eR

)]
.

(E.3)

I have not considered mass terms here as they do not affect the calculations here.

The on-shell expression for Λ is obtained as

ΛI J
µ =

κ

8
eK

µ

(
ψ̄eL{γK, σI J}ψeL + eR{γK, σI J}eR

)
. (E.4)
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The Dirac equations of the doublet and singlet with the above expression of Λ are

obtained respectively as

γKeµ
K∂µψeL −

i
4

ω I J
µ eµKγKσI JψeL −

3iκ
8

λ2
eLψ̄eLγIγ5ψeLγIγ5ψeL

−3iκ
8

λeLλeR ēRγIγ5eRγIγ5ψeL = 0 , (E.5)

γKeµ
K∂µeR −

i
4

ω I J
µ eµKγKσI JeR −

3iκ
8

λ2
eR ēRγIγ5eRγIγ5eR

−3iκ
8

λeLλeRψ̄eLγIγ5ψeLγIγ5eR = 0 . (E.6)

I will first find the equation of motion for electron e = eL + eR. For this purpose I

add electron component of Eq. (E.5) and Eq. (E.6).

γKeµ
K∂µe− i

4
ω I J

µ eµKγKσI Je−
3iκ
8

λeLψ̄eLγIγ5ψeLγIγ5(λeLeL + λeReR)

−3iκ
8

λeR ēRγIγ5eRγIγ5(λeLeL + λeReR) = 0 . (E.7)

The conjugate equation is obtained as

∂µ ēγKeµ
K +

i
4

ω I J
µ eµK ēσI JγK +

3iκ
8

λeLψ̄eLγIγ5ψeL(λeL ēL + λeR ēR)γ
Iγ5

+
3iκ
8

λeR ēRγIγ5eR(λeL ēL + λeR ēR)γ
Iγ5 = 0 . (E.8)

Here I have used

(ψ̄eLγIγ5ψeL)
† = ψ†

eLγ†
5γ†

I γ†
0ψeL

= −ψ†
eLγ5γ0γIγ0γ0ψeL

= −ψ̄eLγ5γIψeL

= ψ̄eLγIγ5ψeL . (E.9)

Pre-multiplying Eq. (E.7) by ē and post-multiplying Eq. (E.8) by e and proceeding

in the same way as in Eq. (3.38), I get

∇̂µ Jµ
e +

3iκ
4

(λeRψ̄eLγIγ5ψeL + λeR ēRγIγ5eR)
[
(λeL ēL + λeR ēR)γ

Iγ5(eL + eR)

−(ēL + ēR)γ
Iγ5(λeLeL + λeReR)

]
= 0 ,

(E.10)
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where Jµ
e = ēγIeeµ

I is the electron current. Now,

(λeL ēL + λeR ēR)γ
Iγ5(eL + eR)− (ēL + ēR)γ

Iγ5(λeLeL + λeReR)

= (λeL − λeR)
(

ēLγIγ5eR − ēRγIγ5eL

)
. (E.11)

Using

eL =
1
2
(1− γ5)e , (E.12)

eR =
1
2
(1 + γ5)e , (E.13)

I get

ēLγIγ5eR =
1
4
(1− γ5)eγIγ5(1 + γ5)e

=
1
4
((1− γ5)e)†γ0γIγ5(1 + γ5)e

=
1
4

e†(1− γ5)γ0γIγ5(1 + γ5)e

=
1
4

ēγIγ5(1 + γ5)e +
1
4

ēγ5γIγ5(1 + γ5)e

=
1
4

ēγIγ5(1 + γ5)e−
1
4

ēγIγ2
5(1 + γ5)e

= 0 . (E.14)

Here I have used the properties of gamma matrices. Similarly I can show that

ēRγIγ5eL = 0 . (E.15)

Thus the contribution of torsion terms still vanishes in spite of the coupling constants

and equation is simply given by

∇̂µ Jµ
e = 0 . (E.16)

I will also investigate the current conservation of neutrino. For this purpose I con-

sider the neutrino component of Eq. (E.5) i. e.,

γKeµ
K∂µνL −

i
4

ω I J
µ eµKγKσI JνL −

3iκ
8

λ2
eLψ̄eLγIγ5ψeLγIγ5νL

−3iκ
8

λeLλeR ēRγIγ5eRγIγ5νL = 0 . (E.17)
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The conjugate equation is obtained as

∂µν̄LγKeµ
K +

i
4

ω I J
µ eµK ν̄LσI JγK +

3iκ
8

λ2
eLψ̄eLγIγ5ψeLν̄LγIγ5

+
3iκ
8

λeLλeR ēRγIγ5eRν̄LγIγ5 = 0 . (E.18)

Pre-multiplying Eq. (E.17) with ν̄L and post-multiplying Eq. (E.18) with νL and

adding them together we can see that the non-linear terms get cancelled. The resulting

equation is thus

∇̂µ Jµ
νL = 0 , (E.19)

where Jµ
νL = ν̄LγIνLeµ

I is the neutrino current. I can thus conclude that geometrical

breaking of chiral symmetry does not affect the current conservation of electron e =

eL + eR, nor of the neutrinos.



F
F I E R Z I D E N T I T I E S

From a given spinor ψ, we have 16 different bilinears [20] namely

Scalar: S = ψ̄ψ , (F.1)

Pseudoscalar: P = iψ̄γ5ψ , (F.2)

Vector: VI = iψ̄γIψ , (F.3)

Axial vector: AI = iψγ5γIψ , (F.4)

Tensor: TI J = ψ̄σI Jψ . (F.5)

The independent identities of these bilinears are

1.TI JV J = −PAI , (F.6)

2. ∗TI JV J = SAJ ; ( ∗TI J = −
i
2

εI JKLTKL) , (F.7)

3.VIV I = −AI AI = −(S2 + P2) . (F.8)

I have mainly used the last identity in the following form in my thesis.

(ψ̄γIγ5ψ)(ψ̄γIγ5ψ) = (ψ̄γ5ψ)2 − (ψ̄ψ)2 . (F.9)

Usually Fierz identities written for more than one species of spinors and they are

connected to the reordering of the spinor fields in a four fermion interaction. Suppose

I have four spinors ψ1, ψ2, ψ3, ψ4 and I consider an interaction term given by

(ψ̄1 Aψ2)(ψ̄3Bψ4) . (F.10)
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This interaction can also be written as

(ψ̄1Mψ4)(ψ̄3Nψ2) . (F.11)

Fierz identities relate the matrices A, B to M, N. The matrices are usually written

in terms of the basis

{ΓA} = {I, γ5, γI , γ5γI , σI J} (I, J = 0, 1, 2, 3) . (F.12)

There are thus 16 different bilinears which are classified into different classes ac-

cording to their behaviour under Lorentz transformation. For discussion and deriva-

tion of the identities see [22, 109].
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